{"title":"Space-Time Parallel Cancellation Interleaved OFDM Systems in Impulsive Noise and Mobile Fading Channels","authors":"H. Yeh, Jun Zhou","doi":"10.1109/RASSE54974.2022.9989980","DOIUrl":null,"url":null,"abstract":"In modern space and communication systems, it is desirable to have a low bit error rate (BER) in impulse noise (IN) and mobile fading channels. IN exists in varied transmission systems, such as digital video broadcasting-terrestrial (DVB-T), digital audio broadcasting (DAB), asymmetric digital subscriber line (ADSL), and the fifth generation (5G) networks. A 2x2 space-time parallel cancellation (STPC) transmission scheme joint with interleaved orthogonal frequency division multiplexing (IOFDM) system is presented in this paper to mitigate IN and mobile fading channel effects. The STPC OFDM system employs an architecture with two-path transmission to mitigate inter-carrier interference (ICI) in mobile fading channels. The interleaving process in IOFDM is employed for increasing mixed time and frequency domain diversity within the two-path STPC OFDM block. Hence, the STPC-IOFDM system characterizes the excellent mitigation of ICI due to the robustness of STPC in mobile fading channels while the interleaving process introduces time and frequency domain diversity to further effectively combat IN and frequency selective fading channels. It is demonstrated via simulations that the proposed STPC-IOFDM system is vigorous to numerous frequency selective environments with or without IN. Its BER performance outperforms ST-OFDM, ST-IOFDM, and STPC-OFDM systems in both IN and COST207 typical urban or bad urban mobile fading channels.","PeriodicalId":382440,"journal":{"name":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RASSE54974.2022.9989980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In modern space and communication systems, it is desirable to have a low bit error rate (BER) in impulse noise (IN) and mobile fading channels. IN exists in varied transmission systems, such as digital video broadcasting-terrestrial (DVB-T), digital audio broadcasting (DAB), asymmetric digital subscriber line (ADSL), and the fifth generation (5G) networks. A 2x2 space-time parallel cancellation (STPC) transmission scheme joint with interleaved orthogonal frequency division multiplexing (IOFDM) system is presented in this paper to mitigate IN and mobile fading channel effects. The STPC OFDM system employs an architecture with two-path transmission to mitigate inter-carrier interference (ICI) in mobile fading channels. The interleaving process in IOFDM is employed for increasing mixed time and frequency domain diversity within the two-path STPC OFDM block. Hence, the STPC-IOFDM system characterizes the excellent mitigation of ICI due to the robustness of STPC in mobile fading channels while the interleaving process introduces time and frequency domain diversity to further effectively combat IN and frequency selective fading channels. It is demonstrated via simulations that the proposed STPC-IOFDM system is vigorous to numerous frequency selective environments with or without IN. Its BER performance outperforms ST-OFDM, ST-IOFDM, and STPC-OFDM systems in both IN and COST207 typical urban or bad urban mobile fading channels.