Average Complexity of Matrix Reduction for Clique Filtrations

Barbara Giunti, Guillaume Houry, Michael Kerber
{"title":"Average Complexity of Matrix Reduction for Clique Filtrations","authors":"Barbara Giunti, Guillaume Houry, Michael Kerber","doi":"10.1145/3476446.3535474","DOIUrl":null,"url":null,"abstract":"We study the algorithmic complexity of computing persistent homology of a randomly chosen filtration. Specifically, we prove upper bounds for the average fill-up (number of non-zero entries) of the boundary matrix on Erdös-Rényi and Vietoris-Rips filtrations after matrix reduction. Our bounds show that, in both cases, the reduced matrix is expected to be significantly sparser than what the general worst-case predicts. Our method is based on a link between the fillup of the boundary matrix and expected Betti numbers of random filtrations. Our bound for Vietoris-Rips complexes is asymptotically tight up to logarithmic factors. We also provide an Erdös-Rényi filtration realising the worst-case.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We study the algorithmic complexity of computing persistent homology of a randomly chosen filtration. Specifically, we prove upper bounds for the average fill-up (number of non-zero entries) of the boundary matrix on Erdös-Rényi and Vietoris-Rips filtrations after matrix reduction. Our bounds show that, in both cases, the reduced matrix is expected to be significantly sparser than what the general worst-case predicts. Our method is based on a link between the fillup of the boundary matrix and expected Betti numbers of random filtrations. Our bound for Vietoris-Rips complexes is asymptotically tight up to logarithmic factors. We also provide an Erdös-Rényi filtration realising the worst-case.
团过滤矩阵约简的平均复杂度
研究了随机选择滤波持久同调计算的算法复杂度。具体来说,我们证明了在Erdös-Rényi和Vietoris-Rips滤波下边界矩阵的平均填充(非零条目数)的上界。我们的边界表明,在这两种情况下,简化矩阵都比一般最坏情况预测的要稀疏得多。我们的方法是基于边界矩阵的填充和随机滤波的期望贝蒂数之间的联系。我们对于Vietoris-Rips复合体的界是渐近紧于对数因子的。我们还提供了一个Erdös-Rényi过滤实现最坏情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信