Unmanned Surface Vehicle Cooperative Task Assignment Based on Genetic Algorithm

Qinghua Luo, Xiaozhen Yan, Di Wu, Ruochen Ding
{"title":"Unmanned Surface Vehicle Cooperative Task Assignment Based on Genetic Algorithm","authors":"Qinghua Luo, Xiaozhen Yan, Di Wu, Ruochen Ding","doi":"10.1109/phm-yantai55411.2022.9941917","DOIUrl":null,"url":null,"abstract":"Task allocation modeling plays an important role in unmanned surface vehicles (USV) collaborative systems. In order to adapt to the complex environment, a cooperative multi-task assignment problem (CMTAP) model suitable for multi-USV, multi-target, and multi-task is designed. The article first clarifies the advantages of collaboration, then based on the traditional genetic algorithm (GA), the crossover and mutation operators are optimized to be more suitable for the current environment. This method utilizes the strong global search ability of GA to optimize the result of cooperative task assignment of USV. Simulation experiments demonstrate the effectiveness of the method.","PeriodicalId":315994,"journal":{"name":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/phm-yantai55411.2022.9941917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Task allocation modeling plays an important role in unmanned surface vehicles (USV) collaborative systems. In order to adapt to the complex environment, a cooperative multi-task assignment problem (CMTAP) model suitable for multi-USV, multi-target, and multi-task is designed. The article first clarifies the advantages of collaboration, then based on the traditional genetic algorithm (GA), the crossover and mutation operators are optimized to be more suitable for the current environment. This method utilizes the strong global search ability of GA to optimize the result of cooperative task assignment of USV. Simulation experiments demonstrate the effectiveness of the method.
基于遗传算法的无人水面车辆协同任务分配
任务分配建模在无人水面车辆协同系统中起着重要的作用。为了适应复杂环境,设计了一种适用于多usv、多目标、多任务的协同多任务分配问题(CMTAP)模型。本文首先阐明了协作的优势,然后在传统遗传算法(GA)的基础上,对交叉和变异算子进行了优化,使其更适合当前环境。该方法利用遗传算法强大的全局搜索能力对USV的协同任务分配结果进行优化。仿真实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信