{"title":"MFWK-Means: Minkowski metric Fuzzy Weighted K-Means for high dimensional data clustering","authors":"L. Svetlova, B. Mirkin, H. Lei","doi":"10.1109/IRI.2013.6642535","DOIUrl":null,"url":null,"abstract":"This paper presents a clustering algorithm, namely MFWK-Means, which is a novel extension of K-Means clustering to the case of fuzzy clusters and weighted features. First, the Weighted K-Means criterion utilizing Minkowski metric is adopted to solve the problem of feature selection for high dimensional data. Then, a further extension to the case of fuzzy clustering is presented to group datasets with natural fuzziness of cluster boundaries. Also, we adopt an intelligent version of K-Means, using Mirkin's method of Anomalous Pattern for initialization. Our new Minkowski metric Fuzzy Weighted K-Means (MFWK-Means) is experimentally validated on both benchmark datasets and synthetic datasets. MFWK-Means is shown to be competitive and more stable against noise in comparison with a variety of versions of K-Means based methods. Moreover, in most situations it reaches the highest clustering accuracy at wider intervals of Minkowski exponent.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents a clustering algorithm, namely MFWK-Means, which is a novel extension of K-Means clustering to the case of fuzzy clusters and weighted features. First, the Weighted K-Means criterion utilizing Minkowski metric is adopted to solve the problem of feature selection for high dimensional data. Then, a further extension to the case of fuzzy clustering is presented to group datasets with natural fuzziness of cluster boundaries. Also, we adopt an intelligent version of K-Means, using Mirkin's method of Anomalous Pattern for initialization. Our new Minkowski metric Fuzzy Weighted K-Means (MFWK-Means) is experimentally validated on both benchmark datasets and synthetic datasets. MFWK-Means is shown to be competitive and more stable against noise in comparison with a variety of versions of K-Means based methods. Moreover, in most situations it reaches the highest clustering accuracy at wider intervals of Minkowski exponent.