M. Bertolusso, G. Pettorru, M. Spanu, M. Fadda, M. Sole, M. Anedda, D. Giusto
{"title":"A passive Wi-Fi based monitoring system for urban flows detection","authors":"M. Bertolusso, G. Pettorru, M. Spanu, M. Fadda, M. Sole, M. Anedda, D. Giusto","doi":"10.1109/IAICT55358.2022.9887478","DOIUrl":null,"url":null,"abstract":"This paper presents an innovative vehicle monitoring system based on Wi-Fi sniffing devices and real-time data processing using machine learning techniques. Our solution involves the construction of a neural network-based multiclass classifier that can classify the incoming Wi-Fi signal from many sources based on the received signal strength. The solution was carried out by training the neural network to predict different output classes corresponding to different vehicular (0-30Km/h,30-60Km/h, 60-90Km/h, 90-120Km/h) and several pedestrian speed ranges among 0-15Km/h.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an innovative vehicle monitoring system based on Wi-Fi sniffing devices and real-time data processing using machine learning techniques. Our solution involves the construction of a neural network-based multiclass classifier that can classify the incoming Wi-Fi signal from many sources based on the received signal strength. The solution was carried out by training the neural network to predict different output classes corresponding to different vehicular (0-30Km/h,30-60Km/h, 60-90Km/h, 90-120Km/h) and several pedestrian speed ranges among 0-15Km/h.