Deep Natural Language Processing in unstructured big data analysis and insights extraction - A quantitative study

Bibhu Dash, Swati Swayamsiddha, Azad Ali
{"title":"Deep Natural Language Processing in unstructured big data analysis and insights extraction - A quantitative study","authors":"Bibhu Dash, Swati Swayamsiddha, Azad Ali","doi":"10.1109/iSSSC56467.2022.10051524","DOIUrl":null,"url":null,"abstract":"In today’s digital age, businesses create tremendous data as part of their regular operations. On legacy or cloud platforms, this data is stored mainly in structured, semi-structured, and unstructured formats, and most of the data kept in the cloud are amorphous, containing sensitive information. With the evolution of AI, organizations are using deep learning and natural language processing to extract the meaning of these big data through unstructured data analysis and insights (UDAI). This study aims to investigate the influence of these unstructured big data analyses and insights on the organization’s decision-making system (DMS), financial sustainability, customer lifetime value (CLV), and organization’s long-term growth prospects while encouraging a culture of self-service analytics. This study uses a validated survey instrument to collect the responses from Fortune-500 organizations to find the adaptability and influence of UDAI in current data-driven decision making and how it impacts organizational DMS, financial sustainability and CLV.","PeriodicalId":334645,"journal":{"name":"2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSSSC56467.2022.10051524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In today’s digital age, businesses create tremendous data as part of their regular operations. On legacy or cloud platforms, this data is stored mainly in structured, semi-structured, and unstructured formats, and most of the data kept in the cloud are amorphous, containing sensitive information. With the evolution of AI, organizations are using deep learning and natural language processing to extract the meaning of these big data through unstructured data analysis and insights (UDAI). This study aims to investigate the influence of these unstructured big data analyses and insights on the organization’s decision-making system (DMS), financial sustainability, customer lifetime value (CLV), and organization’s long-term growth prospects while encouraging a culture of self-service analytics. This study uses a validated survey instrument to collect the responses from Fortune-500 organizations to find the adaptability and influence of UDAI in current data-driven decision making and how it impacts organizational DMS, financial sustainability and CLV.
深度自然语言处理在非结构化大数据分析和见解提取中的应用——定量研究
在当今的数字时代,企业在日常运营中会产生大量数据。在传统平台或云平台上,这些数据主要以结构化、半结构化和非结构化格式存储,而保存在云中的大多数数据都是无定形的,包含敏感信息。随着人工智能的发展,组织正在使用深度学习和自然语言处理,通过非结构化数据分析和洞察(UDAI)来提取这些大数据的含义。本研究旨在探讨这些非结构化大数据分析对组织决策系统(DMS)、财务可持续性、客户生命周期价值(CLV)和组织长期增长前景的影响,同时鼓励自助式分析文化。本研究使用一种经过验证的调查工具来收集财富500强组织的反馈,以发现UDAI在当前数据驱动决策中的适应性和影响力,以及它如何影响组织的DMS、财务可持续性和CLV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信