BESTED: An Exponentially Smoothed Spatial Bayesian Analysis Model for Spatio-temporal Prediction of Daily Precipitation

Monidipa Das, S. Ghosh
{"title":"BESTED: An Exponentially Smoothed Spatial Bayesian Analysis Model for Spatio-temporal Prediction of Daily Precipitation","authors":"Monidipa Das, S. Ghosh","doi":"10.1145/3139958.3140040","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel data-driven model (BESTED), based on spatial Bayesian network with incorporated exponential smoothing mechanism, for predicting precipitation time series on daily basis. In BESTED, the spatial Bayesian network helps to efficiently model the influence of spatially distributed variables. Moreover, the incorporated exponential smoothing mechanism aids in tuning the network inferred values to compensate for the unknown factors, influencing the precipitation rate. Empirical study has been carried out to predict the daily precipitation in West Bengal, India, for the year 2015. The experimental result demonstrates the superiority of the proposed BESTED model, compared to the other benchmarks and state-of-the-art techniques.","PeriodicalId":270649,"journal":{"name":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139958.3140040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes a novel data-driven model (BESTED), based on spatial Bayesian network with incorporated exponential smoothing mechanism, for predicting precipitation time series on daily basis. In BESTED, the spatial Bayesian network helps to efficiently model the influence of spatially distributed variables. Moreover, the incorporated exponential smoothing mechanism aids in tuning the network inferred values to compensate for the unknown factors, influencing the precipitation rate. Empirical study has been carried out to predict the daily precipitation in West Bengal, India, for the year 2015. The experimental result demonstrates the superiority of the proposed BESTED model, compared to the other benchmarks and state-of-the-art techniques.
日降水时空预测的指数平滑空间贝叶斯分析模型
本文提出了一种基于空间贝叶斯网络的基于指数平滑机制的数据驱动模型(BESTED),用于逐日降水时间序列的预测。在BESTED中,空间贝叶斯网络有助于有效地模拟空间分布变量的影响。此外,引入的指数平滑机制有助于调整网络推断值以补偿影响降水率的未知因素。对2015年印度西孟加拉邦的日降水量进行了实证研究。实验结果表明,与其他基准和最先进的技术相比,所提出的BESTED模型具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信