Photochemical Hole Burning and Debye-Waller Factor in Polyvinylalcohol doped with Ionic Porphyrins

K. Sakoda, Masayuki Maeda
{"title":"Photochemical Hole Burning and Debye-Waller Factor in Polyvinylalcohol doped with Ionic Porphyrins","authors":"K. Sakoda, Masayuki Maeda","doi":"10.1364/shbs.1994.wd38","DOIUrl":null,"url":null,"abstract":"Photochemical holes can be burned at relatively high temperatures in the Qx band of a free base porphyrin with ionic substituents when the molecule is dispersed in polyvinylalcohol (PVA) [1-2]. This characteristics of the porphyrin-PVA system is due to the facts that the Debye-Waller factor is relatively large [3] and the thermally activated backward reaction is small [4], Figure 1(a) shows one of such porphyrin molecules, TCPP(Na). The large Debye-Waller factor in porphyrin-PVA system is a direct consequence of a high mean phonon frequency. The typical phonon energy of the porphyrin-PVA system, which was determined as the energy deference between the zero-phonon hole and the bottom of the side hole, is as large as 25 cm–1. According to ref. 3, the Debye-Waller factor f(T) of porphyrin-PVA system is well represented by one-phonon approximation.","PeriodicalId":443330,"journal":{"name":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/shbs.1994.wd38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photochemical holes can be burned at relatively high temperatures in the Qx band of a free base porphyrin with ionic substituents when the molecule is dispersed in polyvinylalcohol (PVA) [1-2]. This characteristics of the porphyrin-PVA system is due to the facts that the Debye-Waller factor is relatively large [3] and the thermally activated backward reaction is small [4], Figure 1(a) shows one of such porphyrin molecules, TCPP(Na). The large Debye-Waller factor in porphyrin-PVA system is a direct consequence of a high mean phonon frequency. The typical phonon energy of the porphyrin-PVA system, which was determined as the energy deference between the zero-phonon hole and the bottom of the side hole, is as large as 25 cm–1. According to ref. 3, the Debye-Waller factor f(T) of porphyrin-PVA system is well represented by one-phonon approximation.
离子卟啉掺杂聚乙烯醇的光化学烧孔和德拜-沃勒因子
当带有离子取代基的游离基卟啉分子分散在聚乙烯醇(PVA)中时,其Qx波段的光化学孔可以在相对较高的温度下燃烧[1-2]。卟啉- pva体系的这种特性是由于Debye-Waller因子比较大[3],而热活化的逆向反应较小[4],图1(a)显示了其中一种卟啉分子TCPP(Na)。在卟啉-聚乙烯醇体系中,大的德拜-沃勒因子是高平均声子频率的直接结果。卟啉- pva体系的典型声子能量为零声子空穴与侧空穴底部的能量差,最大可达25 cm-1。根据文献3,卟啉- pva体系的Debye-Waller因子f(T)可以很好地用单声子近似表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信