John E. Augustine, Soumyottam Chatterjee, Gopal Pandurangan
{"title":"A Fully-Distributed Scalable Peer-to-Peer Protocol for Byzantine-Resilient Distributed Hash Tables","authors":"John E. Augustine, Soumyottam Chatterjee, Gopal Pandurangan","doi":"10.1145/3490148.3538588","DOIUrl":null,"url":null,"abstract":"Performing computation in the presence of faulty and malicious nodes is a central problem in distributed computing. Over 35 years ago, Dwork, Peleg, Pippenger, and Upfal [STOC 1986, SICOMP 1988] studied the fundamental Byzantine agreement problem in sparse, bounded degree networks and presented the first protocol that achieved almost-everywhere agreement among good nodes. However, this protocol and several subsequent protocols including that of King, Saia, Sanwalani, and Vee [FOCS 2006] had the drawback that they were not fully-distributed - in those protocols, nodes are required to have initial knowledge of the entire network topology. This drawback makes such protocols not applicable to real-world communication networks such as peer-to-peer (P2P) networks, which are typically sparse and bounded degree and where nodes initially have only local knowledge of themselves and of their neighbors.","PeriodicalId":112865,"journal":{"name":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490148.3538588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Performing computation in the presence of faulty and malicious nodes is a central problem in distributed computing. Over 35 years ago, Dwork, Peleg, Pippenger, and Upfal [STOC 1986, SICOMP 1988] studied the fundamental Byzantine agreement problem in sparse, bounded degree networks and presented the first protocol that achieved almost-everywhere agreement among good nodes. However, this protocol and several subsequent protocols including that of King, Saia, Sanwalani, and Vee [FOCS 2006] had the drawback that they were not fully-distributed - in those protocols, nodes are required to have initial knowledge of the entire network topology. This drawback makes such protocols not applicable to real-world communication networks such as peer-to-peer (P2P) networks, which are typically sparse and bounded degree and where nodes initially have only local knowledge of themselves and of their neighbors.