Global regularity for an inviscid three-dimensional slow limiting ocean dynamics model

C. Cao, A. Farhat, E. Titi
{"title":"Global regularity for an inviscid three-dimensional slow limiting ocean dynamics model","authors":"C. Cao, A. Farhat, E. Titi","doi":"10.4310/CIS.2013.V13.N1.A4","DOIUrl":null,"url":null,"abstract":"Author(s): Cao, Chongsheng; Farhat, Aseel; Titi, Edriss S | Abstract: We establish, for smooth enough initial data, the global well-posedness (existence, uniqueness and continuous dependence on initial data) of solutions, for an inviscid three-dimensional {\\it slow limiting ocean dynamics} model. This model was derived as a strong rotation limit of the rotating and stratified Boussinesg equations with periodic boundary conditions. To establish our results we utilize the tools developed for investigating the two-dimensional incompressible Euler equations and linear transport equations. Using a weaker formulation of the model we also show the global existence and uniqueness of solutions, for less regular initial data.","PeriodicalId":185710,"journal":{"name":"Commun. Inf. Syst.","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CIS.2013.V13.N1.A4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Author(s): Cao, Chongsheng; Farhat, Aseel; Titi, Edriss S | Abstract: We establish, for smooth enough initial data, the global well-posedness (existence, uniqueness and continuous dependence on initial data) of solutions, for an inviscid three-dimensional {\it slow limiting ocean dynamics} model. This model was derived as a strong rotation limit of the rotating and stratified Boussinesg equations with periodic boundary conditions. To establish our results we utilize the tools developed for investigating the two-dimensional incompressible Euler equations and linear transport equations. Using a weaker formulation of the model we also show the global existence and uniqueness of solutions, for less regular initial data.
无粘三维慢极限海洋动力学模型的全局正则性
作者:曹崇生;高人气,Aseel;摘要:在初始数据足够光滑的条件下,建立了无粘三维{\it慢极限海洋动力学}模型解的全局适定性(存在性、唯一性和对初始数据的连续依赖性)。该模型是具有周期边界条件的旋转分层Boussinesg方程的强旋转极限。为了建立我们的结果,我们利用了用于研究二维不可压缩欧拉方程和线性输运方程的工具。使用模型的一个较弱的公式,我们还证明了解的全局存在性和唯一性,对于不太规则的初始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信