Peramalan Data Runtun Waktu menggunakan Model Hybrid Time Series Regression – Autoregressive Integrated Moving Average

Melisa Arumsari, A. Dani
{"title":"Peramalan Data Runtun Waktu menggunakan Model Hybrid Time Series Regression – Autoregressive Integrated Moving Average","authors":"Melisa Arumsari, A. Dani","doi":"10.23960/JSM.V2I1.2736","DOIUrl":null,"url":null,"abstract":"Forecasting is a method used to estimate or predict a value in the future using data from the past. With the development of methods in time series data analysis, a hybrid method was developed in which a combination of several models was carried out in order to produce a more accurate forecast. The purpose of this study was to determine whether the TSR-ARIMA hybrid method has a better level of accuracy than the individual TSR method so that more accurate forecasting results are obtained. The data in this study are monthly data on the number of passengers on American airlines for the period January 1949 to December 1960. Based on the analysis, the TSR-ARIMA hybrid method produces a MAPE of 3,061% and the TSR method produces an MAPE of 7,902%.","PeriodicalId":286978,"journal":{"name":"Jurnal Siger Matematika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Siger Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23960/JSM.V2I1.2736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Forecasting is a method used to estimate or predict a value in the future using data from the past. With the development of methods in time series data analysis, a hybrid method was developed in which a combination of several models was carried out in order to produce a more accurate forecast. The purpose of this study was to determine whether the TSR-ARIMA hybrid method has a better level of accuracy than the individual TSR method so that more accurate forecasting results are obtained. The data in this study are monthly data on the number of passengers on American airlines for the period January 1949 to December 1960. Based on the analysis, the TSR-ARIMA hybrid method produces a MAPE of 3,061% and the TSR method produces an MAPE of 7,902%.
Runtun Waktu menggunakan模型混合时间序列回归-自回归综合移动平均
预测是一种利用过去的数据来估计或预测未来价值的方法。随着时间序列数据分析方法的发展,为了获得更准确的预测结果,提出了一种混合方法,即将多个模型组合在一起进行预测。本研究的目的是确定TSR- arima混合方法是否比单个TSR方法具有更好的精度水平,从而获得更准确的预测结果。本研究中的数据是1949年1月至1960年12月期间美国航空公司乘客人数的月度数据。通过分析,TSR- arima混合方法的MAPE为3061%,TSR方法的MAPE为7902%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信