{"title":"A comparative study of convolutional neural networks for classification of pigmented skin lesions","authors":"Natalia Camillo do Carmo, J. F. Mari","doi":"10.5753/wvc.2021.18909","DOIUrl":null,"url":null,"abstract":"Skin cancer is one of the most common types of cancer in Brazil and its incidence rate has increased in recent years. Melanoma cases are more aggressive compared to nonmelanoma skin cancer. Machine learning-based classification algorithms can help dermatologists to diagnose whether skin lesion is melanoma or non-melanoma cancer. We compared four convolutional neural networks architectures (ResNet-50, VGG16, Inception-v3, and DenseNet-121) using different training strategies and validation methods to classify seven classes of skin lesions. The experiments were executed using the HAM10000 dataset which contains 10,015 images of pigmented skin lesions. We considered the test accuracy to determine the best model for each strategy. DenseNet-121 was the best model when trained with fine-tuning and data augmentation, 90% (k-fold crossvalidation). Our results can help to improve the use of machine learning algorithms for classifying pigmented skin lesions.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Skin cancer is one of the most common types of cancer in Brazil and its incidence rate has increased in recent years. Melanoma cases are more aggressive compared to nonmelanoma skin cancer. Machine learning-based classification algorithms can help dermatologists to diagnose whether skin lesion is melanoma or non-melanoma cancer. We compared four convolutional neural networks architectures (ResNet-50, VGG16, Inception-v3, and DenseNet-121) using different training strategies and validation methods to classify seven classes of skin lesions. The experiments were executed using the HAM10000 dataset which contains 10,015 images of pigmented skin lesions. We considered the test accuracy to determine the best model for each strategy. DenseNet-121 was the best model when trained with fine-tuning and data augmentation, 90% (k-fold crossvalidation). Our results can help to improve the use of machine learning algorithms for classifying pigmented skin lesions.