Reflectarray Antenna Direct Optimization Using Surrogate Models with Several Geometrical Degrees of Freedom per Polarization

D. R. Prado, J. A. López-Fernández, M. Arrebola
{"title":"Reflectarray Antenna Direct Optimization Using Surrogate Models with Several Geometrical Degrees of Freedom per Polarization","authors":"D. R. Prado, J. A. López-Fernández, M. Arrebola","doi":"10.1109/NEMO51452.2022.10038951","DOIUrl":null,"url":null,"abstract":"In this work, surrogate models based on support vector regression (SVR) of a multi-resonant unit cell with several degrees of freedom (DoF) per polarization are trained and used in a reflectarray antenna design and optimization. Since the unit cell has multiple sharp resonances when considering several DoF, the training process is carried out in a hyper-rectangle around a plane of stability. Results of SVR models with four geometrical DoF are shown to provide highly accurate results for the design and analysis of a very large contoured-beam reflectarray for space applications. The direct optimization layout with the surrogate models allows to improve the cross-polarization figures of merit several dB.","PeriodicalId":102131,"journal":{"name":"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"33 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO51452.2022.10038951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, surrogate models based on support vector regression (SVR) of a multi-resonant unit cell with several degrees of freedom (DoF) per polarization are trained and used in a reflectarray antenna design and optimization. Since the unit cell has multiple sharp resonances when considering several DoF, the training process is carried out in a hyper-rectangle around a plane of stability. Results of SVR models with four geometrical DoF are shown to provide highly accurate results for the design and analysis of a very large contoured-beam reflectarray for space applications. The direct optimization layout with the surrogate models allows to improve the cross-polarization figures of merit several dB.
利用具有多个几何自由度的代理模型直接优化反射天线
在这项工作中,基于支持向量回归(SVR)的多谐振单元格每个极化具有多个自由度(DoF)的代理模型被训练并用于反射天线的设计和优化。由于在考虑多个自由度时,单元胞具有多个尖锐共振,因此训练过程在稳定平面周围的超矩形中进行。结果表明,具有四个几何自由度的支持向量回归模型为空间应用的超大轮廓光束反射镜的设计和分析提供了高精度的结果。使用代理模型的直接优化布局可以将交叉极化值提高几个dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信