Occupant Monitoring System for Traffic Control Based on Visual Categorization

J. J. Torres, P. Alcantarilla, L. Bergasa
{"title":"Occupant Monitoring System for Traffic Control Based on Visual Categorization","authors":"J. J. Torres, P. Alcantarilla, L. Bergasa","doi":"10.1109/IVS.2011.5940420","DOIUrl":null,"url":null,"abstract":"This paper presents the basics of Bag of visual words method, which will be used for an occupant monitoring system that integrates a small onboard camera inside vehicles. It is intended to detect passengers' faces because it is the most appealing characteristic of occupants in a vehicle. This work proposes the implementation of visual categorization by means of two classification methods (Naïve Bayes and Multi-class SVM) that build multi-category image models using the invariant descriptors (SIFT and SURF) extracted from the images under analysis. Bag of visual words approach requires training in order to cluster invariant descriptors and learn the data distribution depending on the classification algorithm. Once the model is created, the category of every test image can be determined by querying a visual dictionary like searching a word in a text dictionary. The performance of the classifiers will be evaluated doing several comparative tests and using standard multi-category image databases. Experimental results and the conclusions are presented.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents the basics of Bag of visual words method, which will be used for an occupant monitoring system that integrates a small onboard camera inside vehicles. It is intended to detect passengers' faces because it is the most appealing characteristic of occupants in a vehicle. This work proposes the implementation of visual categorization by means of two classification methods (Naïve Bayes and Multi-class SVM) that build multi-category image models using the invariant descriptors (SIFT and SURF) extracted from the images under analysis. Bag of visual words approach requires training in order to cluster invariant descriptors and learn the data distribution depending on the classification algorithm. Once the model is created, the category of every test image can be determined by querying a visual dictionary like searching a word in a text dictionary. The performance of the classifiers will be evaluated doing several comparative tests and using standard multi-category image databases. Experimental results and the conclusions are presented.
基于视觉分类的交通控制乘员监控系统
本文介绍了视觉词袋方法的基本原理,该方法将用于集成小型车载摄像头的乘员监控系统。它的目的是检测乘客的脸,因为这是车辆中最吸引人的特征。这项工作提出了通过两种分类方法(Naïve贝叶斯和多类支持向量机)来实现视觉分类,这两种分类方法使用从分析图像中提取的不变描述符(SIFT和SURF)来构建多类别图像模型。视觉词袋方法需要训练来聚类不变描述符,并根据分类算法学习数据分布。一旦创建了模型,就可以通过查询可视化字典来确定每个测试图像的类别,就像在文本字典中搜索单词一样。分类器的性能将通过几个比较测试和使用标准的多类别图像数据库进行评估。给出了实验结果和结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信