Wei Zhang, Xiaohong Zhang, Sheng Huang, Yuting Lu, Kun Wang
{"title":"A Probabilistic Model for Controlling Diversity and Accuracy of Ambiguous Medical Image Segmentation","authors":"Wei Zhang, Xiaohong Zhang, Sheng Huang, Yuting Lu, Kun Wang","doi":"10.1145/3503161.3548115","DOIUrl":null,"url":null,"abstract":"Medical image segmentation tasks often have more than one plausible annotation for a given input image due to its inherent ambiguity. Generating multiple plausible predictions for a single image is of interest for medical critical applications. Many methods estimate the distribution of the annotation space by developing probabilistic models to generate multiple hypotheses. However, these methods aim to improve the diversity of predictions at the expense of the more important accuracy. In this paper, we propose a novel probabilistic segmentation model, called Joint Probabilistic U-net, which successfully achieves flexible control over the two abstract conceptions of diversity and accuracy. Specifically, we (i) model the joint distribution of images and annotations to learn a latent space, which is used to decouple diversity and accuracy, and (ii) transform the Gaussian distribution in the latent space to a complex distribution to improve model's expressiveness. In addition, we explore two strategies for preventing the latent space collapse, which are effective in improving the model's performance on datasets with limited annotation. We demonstrate the effectiveness of the proposed model on two medical image datasets, i.e. LIDC-IDRI and ISBI 2016, and achieved state-of-the-art results on several metrics.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Medical image segmentation tasks often have more than one plausible annotation for a given input image due to its inherent ambiguity. Generating multiple plausible predictions for a single image is of interest for medical critical applications. Many methods estimate the distribution of the annotation space by developing probabilistic models to generate multiple hypotheses. However, these methods aim to improve the diversity of predictions at the expense of the more important accuracy. In this paper, we propose a novel probabilistic segmentation model, called Joint Probabilistic U-net, which successfully achieves flexible control over the two abstract conceptions of diversity and accuracy. Specifically, we (i) model the joint distribution of images and annotations to learn a latent space, which is used to decouple diversity and accuracy, and (ii) transform the Gaussian distribution in the latent space to a complex distribution to improve model's expressiveness. In addition, we explore two strategies for preventing the latent space collapse, which are effective in improving the model's performance on datasets with limited annotation. We demonstrate the effectiveness of the proposed model on two medical image datasets, i.e. LIDC-IDRI and ISBI 2016, and achieved state-of-the-art results on several metrics.