Survival analyses

S. Cubaynes, S. Galas, Myriam Richaud, Ana Sanz Aguilar, R. Pradel, G. Tavecchia, F. Colchero, S. Roques, Richard P. Shefferson, C. Camarda
{"title":"Survival analyses","authors":"S. Cubaynes, S. Galas, Myriam Richaud, Ana Sanz Aguilar, R. Pradel, G. Tavecchia, F. Colchero, S. Roques, Richard P. Shefferson, C. Camarda","doi":"10.1093/oso/9780198838609.003.0013","DOIUrl":null,"url":null,"abstract":"Survival analyses are a key tool for demographers, ecologists, and evolutionary biologists. This chapter presents the most common methods and illustrates their use for species across the Tree of Life. It discusses the challenges associated with various types of survival data, how to model species with a complex life cycle, and includes the impact of environmental factors and individual heterogeneity. It covers the analysis of ‘known-fate’ data collected in lab conditions, using the Kaplan–Meier estimator and Cox’s proportional hazard regression analysis. Alternatively, survival data collected on free-ranging populations usually involve individuals missing at certain monitoring occasions and unknown time at death. The chapter provides an overview of capture–mark–recapture (CMR) models, from single-state to multi-state and multi-event models, and their use in animal and plant demography to estimate demographic parameters while correcting for imperfect detection of individuals. It discusses various inference frameworks available to implement CMR models using a frequentist or Bayesian approach. Only humans are an exception among free-ranging populations, with the existence of several consequent databases with perfect knowledge of age and cause of death for all individuals. The chapter presents an overview of the most common models used to describe mortality patterns over age and time using human mortality data. Throughout, focus is placed on eight case studies, which involve lab organisms, free-ranging animal populations, plant populations, and human populations. Each example includes data and codes, together with step-by-step guidance to run the survival analysis.","PeriodicalId":442239,"journal":{"name":"Demographic Methods across the Tree of Life","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demographic Methods across the Tree of Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198838609.003.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Survival analyses are a key tool for demographers, ecologists, and evolutionary biologists. This chapter presents the most common methods and illustrates their use for species across the Tree of Life. It discusses the challenges associated with various types of survival data, how to model species with a complex life cycle, and includes the impact of environmental factors and individual heterogeneity. It covers the analysis of ‘known-fate’ data collected in lab conditions, using the Kaplan–Meier estimator and Cox’s proportional hazard regression analysis. Alternatively, survival data collected on free-ranging populations usually involve individuals missing at certain monitoring occasions and unknown time at death. The chapter provides an overview of capture–mark–recapture (CMR) models, from single-state to multi-state and multi-event models, and their use in animal and plant demography to estimate demographic parameters while correcting for imperfect detection of individuals. It discusses various inference frameworks available to implement CMR models using a frequentist or Bayesian approach. Only humans are an exception among free-ranging populations, with the existence of several consequent databases with perfect knowledge of age and cause of death for all individuals. The chapter presents an overview of the most common models used to describe mortality patterns over age and time using human mortality data. Throughout, focus is placed on eight case studies, which involve lab organisms, free-ranging animal populations, plant populations, and human populations. Each example includes data and codes, together with step-by-step guidance to run the survival analysis.
生存分析
生存分析是人口统计学家、生态学家和进化生物学家的重要工具。本章介绍了最常用的方法,并举例说明了它们在生命之树上的应用。它讨论了与各种类型的生存数据相关的挑战,如何模拟具有复杂生命周期的物种,并包括环境因素和个体异质性的影响。它涵盖了在实验室条件下收集的“已知命运”数据的分析,使用Kaplan-Meier估计器和Cox比例风险回归分析。另外,在自由放养的种群中收集的生存数据通常涉及在某些监测场合失踪的个体和未知的死亡时间。本章概述了捕获-标记-再捕获(CMR)模型,从单状态到多状态和多事件模型,以及它们在动植物人口统计学中的应用,以估计人口统计参数,同时纠正个体的不完美检测。它讨论了可用于使用频率论或贝叶斯方法实现CMR模型的各种推理框架。在自由放养的种群中,只有人类是一个例外,因此存在几个数据库,对所有个体的年龄和死亡原因了如指掌。本章概述了使用人类死亡率数据来描述随年龄和时间变化的死亡率模式的最常见模型。在整个过程中,重点放在八个案例研究上,涉及实验室生物、自由放养的动物种群、植物种群和人类种群。每个示例都包括数据和代码,以及运行生存分析的逐步指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信