A Comparative Study of Infomax, Extended Infomax and Multi-User Kurtosis Algorithms for Blind Source Separation

Monorama Swain, Rutuparna Panda, P. Kabisatpathy
{"title":"A Comparative Study of Infomax, Extended Infomax and Multi-User Kurtosis Algorithms for Blind Source Separation","authors":"Monorama Swain, Rutuparna Panda, P. Kabisatpathy","doi":"10.4018/IJRSDA.2019010101","DOIUrl":null,"url":null,"abstract":"In this article for the separation of Super Gaussian and Sub-Gaussian signals, we have considered the Multi-User Kurtosis(MUK), Infomax (Information Maximization) and Extended Infomax algorithms. For Extended Infomax we have taken two different non-linear functions and new coefficients and for Infomax we have taken a single non-linear function. We have derived MUK algorithm with stochastic gradient update iteratively using MUK cost function abided by a Gram-Schmidt orthogonalization to project on to the criterion constraint. Amongst the various standards available for measuring blind source separation, Cross-correlation coefficient and Kurtosis are considered to analyze the performance of the algorithms. An important finding of this study, as is evident from the performance table, is that the Kurtosis and Correlation coefficient values are the most favorable for the Extended Infomax algorithm, when compared with the others.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2019010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article for the separation of Super Gaussian and Sub-Gaussian signals, we have considered the Multi-User Kurtosis(MUK), Infomax (Information Maximization) and Extended Infomax algorithms. For Extended Infomax we have taken two different non-linear functions and new coefficients and for Infomax we have taken a single non-linear function. We have derived MUK algorithm with stochastic gradient update iteratively using MUK cost function abided by a Gram-Schmidt orthogonalization to project on to the criterion constraint. Amongst the various standards available for measuring blind source separation, Cross-correlation coefficient and Kurtosis are considered to analyze the performance of the algorithms. An important finding of this study, as is evident from the performance table, is that the Kurtosis and Correlation coefficient values are the most favorable for the Extended Infomax algorithm, when compared with the others.
盲信源分离中的Infomax、扩展Infomax和多用户峰度算法的比较研究
在本文中,对于超高斯和亚高斯信号的分离,我们考虑了多用户峰度(MUK)、信息最大化(Infomax)和扩展的Infomax算法。对于Extended Infomax,我们采用了两个不同的非线性函数和新的系数,而对于Infomax,我们采用了一个非线性函数。利用MUK代价函数遵循Gram-Schmidt正交化映射到准则约束上,推导了随机梯度迭代更新的MUK算法。在测量盲源分离的各种标准中,考虑了互相关系数和峰度来分析算法的性能。从性能表中可以明显看出,本研究的一个重要发现是,与其他算法相比,峰度和相关系数值最有利于Extended Infomax算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信