DeepViFi

Utkrisht Rajkumar, Sara Javadzadeh, Mihir Bafna, D. Wu, Rose Yu, Jingbo Shang, V. Bafna
{"title":"DeepViFi","authors":"Utkrisht Rajkumar, Sara Javadzadeh, Mihir Bafna, D. Wu, Rose Yu, Jingbo Shang, V. Bafna","doi":"10.1145/3535508.3545551","DOIUrl":null,"url":null,"abstract":"We consider the problem of identifying viral reads in human host genome data. We pose the problem as open-set classification as reads can originate from unknown sources such as bacterial and fungal genomes. Sequence-matching methods have low sensitivity in recognizing viral reads when the viral family is highly diverged. Hidden Markov models have higher sensitivity but require domain-specific training and are difficult to repurpose for identifying different viral families. Supervised learning methods can be trained with little domain-specific knowledge but have reduced sensitivity in open-set scenarios. We present DeepViFi, a transformer-based pipeline, to detect viral reads in short-read whole genome sequence data. At 90% precision, DeepViFi achieves 90% recall compared to 15% for other deep learning methods. DeepViFi provides a semi-supervised framework to learn representations of viral families without domain-specific knowledge, and rapidly and accurately identify target sequences in open-set settings.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider the problem of identifying viral reads in human host genome data. We pose the problem as open-set classification as reads can originate from unknown sources such as bacterial and fungal genomes. Sequence-matching methods have low sensitivity in recognizing viral reads when the viral family is highly diverged. Hidden Markov models have higher sensitivity but require domain-specific training and are difficult to repurpose for identifying different viral families. Supervised learning methods can be trained with little domain-specific knowledge but have reduced sensitivity in open-set scenarios. We present DeepViFi, a transformer-based pipeline, to detect viral reads in short-read whole genome sequence data. At 90% precision, DeepViFi achieves 90% recall compared to 15% for other deep learning methods. DeepViFi provides a semi-supervised framework to learn representations of viral families without domain-specific knowledge, and rapidly and accurately identify target sequences in open-set settings.
DeepViFi
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信