Building detection with spatial voting and morphology based segmentation

Abdullah H. Ozcan, C. Ünsalan
{"title":"Building detection with spatial voting and morphology based segmentation","authors":"Abdullah H. Ozcan, C. Ünsalan","doi":"10.1109/SIU.2016.7495769","DOIUrl":null,"url":null,"abstract":"Automated object detection in remotely sensed data has gained wide application areas due to increased sensor resolution. In this study, we propose a novel building detection method using high resolution DSM data and true orthophoto image. In the proposed method, DSM feature points and NDVI are obtained. Then, they are used for spatial voting to generate a building probability map. Local maxima of this map are used as seed points for segmentation. For this purpose, a morphology based segmentation method is proposed. This way, buildings are detected from DSM data. We tested our method on ISPRS semantic labeling dataset and obtained promising results.","PeriodicalId":427250,"journal":{"name":"2016 24th Signal Processing and Communication Application Conference (SIU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Signal Processing and Communication Application Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2016.7495769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated object detection in remotely sensed data has gained wide application areas due to increased sensor resolution. In this study, we propose a novel building detection method using high resolution DSM data and true orthophoto image. In the proposed method, DSM feature points and NDVI are obtained. Then, they are used for spatial voting to generate a building probability map. Local maxima of this map are used as seed points for segmentation. For this purpose, a morphology based segmentation method is proposed. This way, buildings are detected from DSM data. We tested our method on ISPRS semantic labeling dataset and obtained promising results.
基于空间投票和形态学分割的建筑物检测
由于传感器分辨率的提高,遥感数据中的自动目标检测已经获得了广泛的应用领域。在本研究中,我们提出了一种利用高分辨率DSM数据和真正射影像的新建筑检测方法。在该方法中,获得DSM特征点和NDVI。然后,利用它们进行空间投票,生成建筑概率图。使用该映射的局部最大值作为种子点进行分割。为此,提出了一种基于形态学的分割方法。通过这种方式,可以从DSM数据中检测到建筑物。在ISPRS语义标注数据集上进行了测试,取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信