Application of a regressive neural network with autoencoder for monochromatic images in ultrasound tomography

T. Rymarczyk, G. Kłosowski, Tomasz Cieplak, E. Kozłowski, Konrad Kania
{"title":"Application of a regressive neural network with autoencoder for monochromatic images in ultrasound tomography","authors":"T. Rymarczyk, G. Kłosowski, Tomasz Cieplak, E. Kozłowski, Konrad Kania","doi":"10.23919/PTZE.2019.8781750","DOIUrl":null,"url":null,"abstract":"The article presents a novel approach to ultrasound tomography in industrial applications. In order to visualize the interior of a tank (reactor) filled with tap water, a single neural network enhanced with autoencoder was used. A novelty is the use of an autoencoder to improve the quality of the measurement vector. Thanks to the use of the autoencoder for denoising the input measurements in connection with the appropriately adapted neural network, the quality of the output image was improved. A robust algorithm was developed that properly reconstructs hidden objects in monochrome images with high efficiency.","PeriodicalId":288282,"journal":{"name":"2019 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PTZE.2019.8781750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The article presents a novel approach to ultrasound tomography in industrial applications. In order to visualize the interior of a tank (reactor) filled with tap water, a single neural network enhanced with autoencoder was used. A novelty is the use of an autoencoder to improve the quality of the measurement vector. Thanks to the use of the autoencoder for denoising the input measurements in connection with the appropriately adapted neural network, the quality of the output image was improved. A robust algorithm was developed that properly reconstructs hidden objects in monochrome images with high efficiency.
带自编码器的回归神经网络在超声体层摄影单色图像中的应用
本文介绍了一种工业应用的超声断层成像新方法。为了使装满自来水的水箱(反应器)内部可视化,采用了一种增强自编码器的单神经网络。新颖之处在于使用自动编码器来提高测量矢量的质量。由于使用自编码器对输入测量值进行去噪,并与适当适应的神经网络相结合,输出图像的质量得到了改善。提出了一种鲁棒的算法,可以有效地重建单色图像中的隐藏目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信