Lossless cascade networks and stochastic estimation

H. Lev-Ari
{"title":"Lossless cascade networks and stochastic estimation","authors":"H. Lev-Ari","doi":"10.1109/CDC.1989.70066","DOIUrl":null,"url":null,"abstract":"The notion of matrices with generalized displacement structure is introduced. An efficient procedure for Cholesky factorization of nonstationary covariances with such structure is presented. An inverse scattering interpretation of this procedure relates it to lossless cascade models with p+q-1 parameters per layer where (p, q) denotes the displacement inertia of the covariance matrix. Matrices with displacement inertia are of particular interest: they have given rise to cascade models that are lossless two-ports, with a single parameter per layer. The author uses the cascade model to construct Levinson-type recursions for the prediction polynomials associated with structured nonstationary covariances.<<ETX>>","PeriodicalId":156565,"journal":{"name":"Proceedings of the 28th IEEE Conference on Decision and Control,","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th IEEE Conference on Decision and Control,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1989.70066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The notion of matrices with generalized displacement structure is introduced. An efficient procedure for Cholesky factorization of nonstationary covariances with such structure is presented. An inverse scattering interpretation of this procedure relates it to lossless cascade models with p+q-1 parameters per layer where (p, q) denotes the displacement inertia of the covariance matrix. Matrices with displacement inertia are of particular interest: they have given rise to cascade models that are lossless two-ports, with a single parameter per layer. The author uses the cascade model to construct Levinson-type recursions for the prediction polynomials associated with structured nonstationary covariances.<>
无损级联网络与随机估计
引入了广义位移结构矩阵的概念。提出了一种有效的非平稳协方差的Cholesky分解方法。该过程的逆散射解释将其与每层p+q-1个参数的无损级联模型联系起来,其中(p, q)表示协方差矩阵的位移惯性。具有位移惯性的矩阵是特别有趣的:它们产生了级联模型,是无损的双端口,每层只有一个参数。作者使用级联模型构造与结构非平稳协方差相关的预测多项式的levinson型递归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信