Assessing polarisation in brand-related comments on three Swiss online media portals with Natural Language Processing

S. Griesser, Adriana Ricklin, Remo Kälin, Guang Lu
{"title":"Assessing polarisation in brand-related comments on three Swiss online media portals with Natural Language Processing","authors":"S. Griesser, Adriana Ricklin, Remo Kälin, Guang Lu","doi":"10.1109/SDS57534.2023.00026","DOIUrl":null,"url":null,"abstract":"Polarisation increases content views, perceived importance of the content, and engagement. But it can also harm customer relationships. The degree of polarisation of four media brands is assessed in brand-related comments using sentiment and emotional intensity analysis and topic modelling. The degree of polarisation differs significantly by brand and topic. The three most polarising topics are law enforcement, Russia, and Corona transmissions. The three least polarising topics are broadcasting, entertainment and (Swiss) German language. Measuring polarisation helps to monitor brand performance.","PeriodicalId":150544,"journal":{"name":"2023 10th IEEE Swiss Conference on Data Science (SDS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 10th IEEE Swiss Conference on Data Science (SDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDS57534.2023.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polarisation increases content views, perceived importance of the content, and engagement. But it can also harm customer relationships. The degree of polarisation of four media brands is assessed in brand-related comments using sentiment and emotional intensity analysis and topic modelling. The degree of polarisation differs significantly by brand and topic. The three most polarising topics are law enforcement, Russia, and Corona transmissions. The three least polarising topics are broadcasting, entertainment and (Swiss) German language. Measuring polarisation helps to monitor brand performance.
用自然语言处理评估瑞士三家在线媒体门户网站上品牌相关评论的两极分化
两极分化增加了内容的浏览量、内容的感知重要性和参与度。但它也会损害客户关系。在与品牌相关的评论中,使用情绪和情感强度分析以及话题建模来评估四个媒体品牌的两极分化程度。两极分化的程度因品牌和话题而异。三个最极端的话题是执法、俄罗斯和冠状病毒传播。三个最不两极分化的话题是广播、娱乐和(瑞士)德语。衡量两极分化有助于监测品牌表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信