Predicting COVID-19 trends in Canada: a tale of four models

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wandong Zhang, W.G. (Will) Zhao, Dana Wu, Yimin Yang
{"title":"Predicting COVID-19 trends in Canada: a tale of four models","authors":"Wandong Zhang,&nbsp;W.G. (Will) Zhao,&nbsp;Dana Wu,&nbsp;Yimin Yang","doi":"10.1049/ccs.2020.0017","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study aims to offer multiple-model informed predictions of COVID-19 in Canada, specifically through the use of deep learning strategy and mathematical prediction models including long-short term memory network, logistic regression model, Gaussian model, and susceptible-infected-removed model. Using the published data as of the 10th of April 2020, the authors forecast that the daily increased number of infective cases in Canada has not reached the peak turning point and will continue to increase. Therefore, Canada's healthcare services need to be ready for the magnitude of this pandemic.</p>\n </div>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ccs.2020.0017","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs.2020.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7

Abstract

This study aims to offer multiple-model informed predictions of COVID-19 in Canada, specifically through the use of deep learning strategy and mathematical prediction models including long-short term memory network, logistic regression model, Gaussian model, and susceptible-infected-removed model. Using the published data as of the 10th of April 2020, the authors forecast that the daily increased number of infective cases in Canada has not reached the peak turning point and will continue to increase. Therefore, Canada's healthcare services need to be ready for the magnitude of this pandemic.

Abstract Image

预测加拿大COVID-19趋势:四个模型的故事
本研究旨在通过使用深度学习策略和包括长短期记忆网络、逻辑回归模型、高斯模型和易感感染-去除模型在内的数学预测模型,为加拿大的COVID-19提供多模型的信息预测。作者利用截至2020年4月10日的公布数据预测,加拿大每天增加的感染病例数尚未达到峰值转折点,并将继续增加。因此,加拿大的医疗保健服务需要为这次大流行的严重性做好准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信