{"title":"Backward Deep BSDE Methods and Applications to Nonlinear Problems","authors":"Jessica (Yajie) Yu, B. Hientzsch, N. Ganesan","doi":"10.2139/ssrn.3626208","DOIUrl":null,"url":null,"abstract":"We present a pathwise deep Backward Stochastic Differential Equation (BSDE) method for Forward Backward Stochastic Differential Equations with terminal conditions that time-steps the BSDE backwards and apply it to the differential rates problem as a prototypical nonlinear problem of independent financial interest. The nonlinear equation for the backward time-step is solved exactly or by a Taylor-based approximation. This is the first application of such a pathwise backward time-stepping deep BSDE approach for problems with nonlinear generators. We extend the method to the case when the initial value of the forward components X can be a parameter rather than fixed and similarly to also learn values at intermediate times. We present numerical results for a call combination and for a straddle, the latter comparing well to those obtained by Forsyth and Labahn with a specialized PDE solver.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3626208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We present a pathwise deep Backward Stochastic Differential Equation (BSDE) method for Forward Backward Stochastic Differential Equations with terminal conditions that time-steps the BSDE backwards and apply it to the differential rates problem as a prototypical nonlinear problem of independent financial interest. The nonlinear equation for the backward time-step is solved exactly or by a Taylor-based approximation. This is the first application of such a pathwise backward time-stepping deep BSDE approach for problems with nonlinear generators. We extend the method to the case when the initial value of the forward components X can be a parameter rather than fixed and similarly to also learn values at intermediate times. We present numerical results for a call combination and for a straddle, the latter comparing well to those obtained by Forsyth and Labahn with a specialized PDE solver.