A Linear Delay Algorithm for Enumeration of 2-Edge/Vertex-connected Induced Subgraphs

Takumi Tada, Kazuya Haraguchi
{"title":"A Linear Delay Algorithm for Enumeration of 2-Edge/Vertex-connected Induced Subgraphs","authors":"Takumi Tada, Kazuya Haraguchi","doi":"10.48550/arXiv.2302.05526","DOIUrl":null,"url":null,"abstract":"For a set system $(V,{\\mathcal C}\\subseteq 2^V)$, we call a subset $C\\in{\\mathcal C}$ a component. A nonempty subset $Y\\subseteq C$ is a minimal removable set (MRS) of $C$ if $C\\setminus Y\\in{\\mathcal C}$ and no proper nonempty subset $Z\\subsetneq Y$ satisfies $C\\setminus Z\\in{\\mathcal C}$. In this paper, we consider the problem of enumerating all components in a set system such that, for every two components $C,C'\\in{\\mathcal C}$ with $C'\\subsetneq C$, every MRS $X$ of $C$ satisfies either $X\\subseteq C'$ or $X\\cap C'=\\emptyset$. We provide a partition-based algorithm for this problem, which yields the first linear delay algorithms to enumerate all 2-edge-connected induced subgraphs, and to enumerate all 2-vertex-connected induced subgraphs.","PeriodicalId":403593,"journal":{"name":"International Workshop on Combinatorial Algorithms","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Combinatorial Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.05526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a set system $(V,{\mathcal C}\subseteq 2^V)$, we call a subset $C\in{\mathcal C}$ a component. A nonempty subset $Y\subseteq C$ is a minimal removable set (MRS) of $C$ if $C\setminus Y\in{\mathcal C}$ and no proper nonempty subset $Z\subsetneq Y$ satisfies $C\setminus Z\in{\mathcal C}$. In this paper, we consider the problem of enumerating all components in a set system such that, for every two components $C,C'\in{\mathcal C}$ with $C'\subsetneq C$, every MRS $X$ of $C$ satisfies either $X\subseteq C'$ or $X\cap C'=\emptyset$. We provide a partition-based algorithm for this problem, which yields the first linear delay algorithms to enumerate all 2-edge-connected induced subgraphs, and to enumerate all 2-vertex-connected induced subgraphs.
2边/点连通诱导子图枚举的线性延迟算法
对于一个集合系统$(V,{\mathcal C}\subseteq 2^V)$,我们称一个子集$C\in{\mathcal C}$为一个分量。如果$C\ set- Y\in{\mathcal C}$和$Z\subsetneq Y$不满足$C\ set- Z\in{\mathcal C}$,则非空子集$Y\subseteq C$是$C$的最小可移动集(MRS)。在本文中,我们考虑枚举集合系统中的所有分量的问题,使得对于每两个分量$C,C'\ \mathcal C}$与$C'\subsetneq C$, $C$的每一个MRS $X$满足$X\subseteq C'$或$X\cap C'=\emptyset$。我们提供了一个基于分区的算法,该算法产生了第一个枚举所有2边连通的诱导子图和枚举所有2点连通的诱导子图的线性延迟算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信