{"title":"Localized surface plasmon resonance of gold nanoparticle-cytocrome C to detect the presence of nitric oxide gas","authors":"Sri Nengsih, A. Umar, M. Salleh, M. Yahaya","doi":"10.1109/SMELEC.2010.5549565","DOIUrl":null,"url":null,"abstract":"This paper reports the study of the localized surface plasmon resonance (LSPR) characteristic of the gold nanoparticle-cytochrome c hybrid thin film to detect the presence of nitric oxide (NO) gas. For the fabrications of gold nanoparticles ensemble on the surface, the seed mediated growth method was used. The cytochrome C (cyt c) thin film on gold nanoparticles was prepared using the spin coating technique. Detection of gas was based on the change in the LSPR of gold nanoparticle modified cytocrome C film upon exposure to the gas sample. It was found that the SPR peak of absorbance spectrum of gold nanoparticle-cyt c film was decreased when the NO gas flowed into the sensor chamber. The mechanism for detection of NO's gas will be discussed in this paper.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports the study of the localized surface plasmon resonance (LSPR) characteristic of the gold nanoparticle-cytochrome c hybrid thin film to detect the presence of nitric oxide (NO) gas. For the fabrications of gold nanoparticles ensemble on the surface, the seed mediated growth method was used. The cytochrome C (cyt c) thin film on gold nanoparticles was prepared using the spin coating technique. Detection of gas was based on the change in the LSPR of gold nanoparticle modified cytocrome C film upon exposure to the gas sample. It was found that the SPR peak of absorbance spectrum of gold nanoparticle-cyt c film was decreased when the NO gas flowed into the sensor chamber. The mechanism for detection of NO's gas will be discussed in this paper.