Q-learning Based Radio Channels Utility Evaluation Algorithm for the Local Dynamic Spectrum Management in Mobile Ad-hoc Networks

Krzysztof Malon, J. Łopatka, P. Skokowski
{"title":"Q-learning Based Radio Channels Utility Evaluation Algorithm for the Local Dynamic Spectrum Management in Mobile Ad-hoc Networks","authors":"Krzysztof Malon, J. Łopatka, P. Skokowski","doi":"10.23919/URSI48707.2020.9254037","DOIUrl":null,"url":null,"abstract":"This paper presents advantages of the machine learning used for estimation of specific radio channel usefulness, necessary for dynamic spectrum access. This method enables more efficient use of spectral resources, that are temporarily not used by licensed users. It indicates which channels are the most useful, i.e. give the highest probability of successful transmission and avoidance of interferences. Profile of Q-learning algorithm operation may be controlled by adaptation of the learning rate and greedy parameter.","PeriodicalId":185201,"journal":{"name":"2020 Baltic URSI Symposium (URSI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Baltic URSI Symposium (URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSI48707.2020.9254037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents advantages of the machine learning used for estimation of specific radio channel usefulness, necessary for dynamic spectrum access. This method enables more efficient use of spectral resources, that are temporarily not used by licensed users. It indicates which channels are the most useful, i.e. give the highest probability of successful transmission and avoidance of interferences. Profile of Q-learning algorithm operation may be controlled by adaptation of the learning rate and greedy parameter.
基于q学习的移动自组网本地动态频谱管理无线信道效用评估算法
本文介绍了机器学习用于估计特定无线电信道有用性的优点,这是动态频谱访问所必需的。这种方法可以更有效地利用暂时未被许可用户使用的频谱资源。它指出哪些信道是最有用的,即提供最高的成功传输和避免干扰的概率。q -学习算法的运行轮廓可以通过学习率和贪心参数的自适应来控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信