Short-range fixed head hydrothermal scheduling using Fast genetic algorithm

B. Ramesh Kumar, M. Murali, M. Sailaja Kumari, M. Sydulu
{"title":"Short-range fixed head hydrothermal scheduling using Fast genetic algorithm","authors":"B. Ramesh Kumar, M. Murali, M. Sailaja Kumari, M. Sydulu","doi":"10.1109/ICIEA.2012.6360925","DOIUrl":null,"url":null,"abstract":"This paper presents a Fast genetic algorithm for solving Hydrothermal scheduling (HTS) problem. Genetic Algorithms (GAs) perform powerful global searches, but their long computation times, put a limitation when solving large scale optimization problems. The present paper describes a Fast GA (FGA) to overcome this limitation, by starting with random solutions within the search space and narrowing down the search space by considering the minimum and maximum errors of the population members. Since the search space is restricted to a small region within the available search space the algorithm works very fast. This algorithm reduces the computational burden and number of generations to converge. The proposed algorithm has been demonstrated for HTS of various combinations of Hydro thermal systems. In all the cases Fast GA shows reliable convergence. The final results obtained using Fast GA are compared with simple (conventional) GA and found to be encouraging.","PeriodicalId":220747,"journal":{"name":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2012.6360925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents a Fast genetic algorithm for solving Hydrothermal scheduling (HTS) problem. Genetic Algorithms (GAs) perform powerful global searches, but their long computation times, put a limitation when solving large scale optimization problems. The present paper describes a Fast GA (FGA) to overcome this limitation, by starting with random solutions within the search space and narrowing down the search space by considering the minimum and maximum errors of the population members. Since the search space is restricted to a small region within the available search space the algorithm works very fast. This algorithm reduces the computational burden and number of generations to converge. The proposed algorithm has been demonstrated for HTS of various combinations of Hydro thermal systems. In all the cases Fast GA shows reliable convergence. The final results obtained using Fast GA are compared with simple (conventional) GA and found to be encouraging.
基于快速遗传算法的短程固定水头热液调度
提出了一种求解热液调度问题的快速遗传算法。遗传算法具有强大的全局搜索功能,但其计算时间长,在求解大规模优化问题时存在一定的局限性。本文描述了一种快速遗传算法(FGA)来克服这一限制,它从搜索空间内的随机解开始,通过考虑总体成员的最小和最大误差来缩小搜索空间。由于搜索空间被限制在可用搜索空间的一个小区域内,该算法的工作速度非常快。该算法减少了计算量和收敛的代数。所提出的算法已被证明了各种组合的水热系统的HTS。在所有情况下,快速遗传算法都表现出可靠的收敛性。将快速遗传算法的最终结果与简单遗传算法进行了比较,结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信