Continuous Dataflow Update Strategies for Mission-Critical Applications

Charith Wickramaarachchi, Yogesh L. Simmhan
{"title":"Continuous Dataflow Update Strategies for Mission-Critical Applications","authors":"Charith Wickramaarachchi, Yogesh L. Simmhan","doi":"10.1109/eScience.2013.35","DOIUrl":null,"url":null,"abstract":"Continuous data flows complement scientific work-flows by allowing composition of real time data ingest and analytics pipelines to process data streams from pervasive sensors and \"always-on\" scientific instruments. Such data flows are mission-critical applications that cannot suffer downtime, need to operate consistently, and are long running, but may need to be updated to fix bugs or add features. This poses the problem: How do we update the continuous dataflow application with minimal disruption? In this paper, we formalize different types of dataflow update models for continuous dataflow applications, and identify the qualitative and quantitative metrics to be considered when choosing an update strategy. We propose five dataflow update strategies, and analytically characterize their performance trade-offs. We validate one of these consistent, low-latency update strategies using the Floe dataflow engine for an eEngineering application from the Smart Power Grid domain, and show its relative performance benefits against a naïve update strategy.","PeriodicalId":325272,"journal":{"name":"2013 IEEE 9th International Conference on e-Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on e-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2013.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Continuous data flows complement scientific work-flows by allowing composition of real time data ingest and analytics pipelines to process data streams from pervasive sensors and "always-on" scientific instruments. Such data flows are mission-critical applications that cannot suffer downtime, need to operate consistently, and are long running, but may need to be updated to fix bugs or add features. This poses the problem: How do we update the continuous dataflow application with minimal disruption? In this paper, we formalize different types of dataflow update models for continuous dataflow applications, and identify the qualitative and quantitative metrics to be considered when choosing an update strategy. We propose five dataflow update strategies, and analytically characterize their performance trade-offs. We validate one of these consistent, low-latency update strategies using the Floe dataflow engine for an eEngineering application from the Smart Power Grid domain, and show its relative performance benefits against a naïve update strategy.
关键任务应用程序的持续数据流更新策略
连续数据流通过允许实时数据摄取和分析管道的组合来处理来自无处不在的传感器和“永远在线”的科学仪器的数据流,从而补充了科学工作流程。这些数据流是任务关键型应用程序,它们不能停机,需要一致地操作,并且长时间运行,但可能需要更新以修复错误或添加功能。这就提出了一个问题:我们如何在最小的中断下更新连续数据流应用程序?在本文中,我们为连续数据流应用程序形式化了不同类型的数据流更新模型,并确定了在选择更新策略时要考虑的定性和定量指标。我们提出了五种数据流更新策略,并分析表征了它们的性能权衡。我们使用来自智能电网领域的eEngineering应用程序的Floe数据流引擎验证这些一致的低延迟更新策略之一,并显示其相对于naïve更新策略的相对性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信