{"title":"An optimal design of high performance interface circuit with acoustic transducer model","authors":"Yu-Chun Hsu, Jen-Yi Chen, T. Mukherjee, G. Fedder","doi":"10.1109/ASSCC.2007.4425685","DOIUrl":null,"url":null,"abstract":"Reducing interface circuit power consumption without compromising low noise performance is an increasing challenge for portable sensor applications. Thus paper reports a high power efficiency and high SNR capacitive MEMS microphone interface circuit using a negative feedback amplifier. The transistors in the interface circuit are biased in the deep subthreshold region, for a 45% better figure of merit (FoM) that considers both noise and power. The MEMS microphone mechanical behavior is modeled using an analog hardware description language to enable co-simulation of the microphone together with the circuit. This co-simulation platform enables optimization of the MEMS microphone simultaneously with the interface circuit.","PeriodicalId":186095,"journal":{"name":"2007 IEEE Asian Solid-State Circuits Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2007.4425685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Reducing interface circuit power consumption without compromising low noise performance is an increasing challenge for portable sensor applications. Thus paper reports a high power efficiency and high SNR capacitive MEMS microphone interface circuit using a negative feedback amplifier. The transistors in the interface circuit are biased in the deep subthreshold region, for a 45% better figure of merit (FoM) that considers both noise and power. The MEMS microphone mechanical behavior is modeled using an analog hardware description language to enable co-simulation of the microphone together with the circuit. This co-simulation platform enables optimization of the MEMS microphone simultaneously with the interface circuit.