A Framework for Statistically-Sound Customer Segment Search

S. Amer-Yahia, Laure Berti-Équille, Abdelouahab Chibah
{"title":"A Framework for Statistically-Sound Customer Segment Search","authors":"S. Amer-Yahia, Laure Berti-Équille, Abdelouahab Chibah","doi":"10.1109/DSAA53316.2021.9564199","DOIUrl":null,"url":null,"abstract":"We develop S4, a Statistically-Sound Segment Search framework that combines principled data partitioning and sound statistical testing to verify common hypotheses in retail data and return interpretable customer data segments. Our framework accommodates one-sample, two-sample, and multiple-sample testing, to provide various aggregations and comparisons of customer transactions. To control the proportion of false discoveries in multiple hypothesis testing, we enforce an FDR-controlling procedure and formulate a unified optimization problem that returns customer data segments that satisfy the test for a given significance level, maximize coverage of the input data, and are within a risk capital. We develop a greedy algorithm to explore different data partitions and test multiple hypotheses in a sound manner. Our extensive experiments on four retail data sets examine the interaction between significance, risk and coverage, and demonstrate the expressivity, usefulness, and scalability of S4 in practice.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop S4, a Statistically-Sound Segment Search framework that combines principled data partitioning and sound statistical testing to verify common hypotheses in retail data and return interpretable customer data segments. Our framework accommodates one-sample, two-sample, and multiple-sample testing, to provide various aggregations and comparisons of customer transactions. To control the proportion of false discoveries in multiple hypothesis testing, we enforce an FDR-controlling procedure and formulate a unified optimization problem that returns customer data segments that satisfy the test for a given significance level, maximize coverage of the input data, and are within a risk capital. We develop a greedy algorithm to explore different data partitions and test multiple hypotheses in a sound manner. Our extensive experiments on four retail data sets examine the interaction between significance, risk and coverage, and demonstrate the expressivity, usefulness, and scalability of S4 in practice.
一个统计可靠的客户细分搜索框架
我们开发了S4,这是一个统计上合理的细分搜索框架,它结合了有原则的数据划分和合理的统计测试,以验证零售数据中的常见假设,并返回可解释的客户数据细分。我们的框架支持单样本、双样本和多样本测试,以提供客户交易的各种聚合和比较。为了控制多重假设检验中错误发现的比例,我们执行了一个fdr控制程序,并制定了一个统一的优化问题,该问题返回的客户数据段满足给定显著性水平的检验,最大限度地覆盖输入数据,并且在风险资本范围内。我们开发了一种贪婪算法来探索不同的数据分区,并以合理的方式测试多个假设。我们在四个零售数据集上进行了广泛的实验,检验了重要性、风险和覆盖率之间的相互作用,并在实践中展示了S4的表达性、有用性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信