{"title":"Painting Style Classification Using Deep Neural Networks","authors":"V. Kovalev, A. G. Shishkin","doi":"10.1109/CCET50901.2020.9213161","DOIUrl":null,"url":null,"abstract":"In this paper we describe the problem of painting style classification into five classes: impressionism, realism, expressionism, post-impressionism and romanticism. While most previous approaches relied on image processing and manual feature extraction from painting images, our model based on the ResNet architecture and pre-trained on the ImageNet dataset operates on the raw pixel level. The training has been performed on a large dataset (about 43k images for five class style classification problem). To increase the quality of final model a large number of various augmentations were used: random Affine transform, crop, flip, color jitter (i.e. contrast, hue, saturation), normalization, a scheduler for the optimizer. Finally model weights were pruned which allowed increasing accuracy up to 51.5% and decreasing computation time as well.","PeriodicalId":236862,"journal":{"name":"2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCET50901.2020.9213161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we describe the problem of painting style classification into five classes: impressionism, realism, expressionism, post-impressionism and romanticism. While most previous approaches relied on image processing and manual feature extraction from painting images, our model based on the ResNet architecture and pre-trained on the ImageNet dataset operates on the raw pixel level. The training has been performed on a large dataset (about 43k images for five class style classification problem). To increase the quality of final model a large number of various augmentations were used: random Affine transform, crop, flip, color jitter (i.e. contrast, hue, saturation), normalization, a scheduler for the optimizer. Finally model weights were pruned which allowed increasing accuracy up to 51.5% and decreasing computation time as well.