Dual Euclidean Shortest Path Search (Extended Abstract)

Ryan Hechenberger, P. J. Stuckey, P. L. Bodic, Daniel D. Harabor
{"title":"Dual Euclidean Shortest Path Search (Extended Abstract)","authors":"Ryan Hechenberger, P. J. Stuckey, P. L. Bodic, Daniel D. Harabor","doi":"10.1609/socs.v15i1.21787","DOIUrl":null,"url":null,"abstract":"The Euclidean Shortest Path Problem (ESPP) asks us to find a minimum length path between two points on a 2D plane while avoiding a set of polygonal obstacles. Existing approaches for ESPP, based on Dijkstra or A* search, are primal methods that gradually build up longer and longer valid paths until they reach the target. In this paper we define an alternative algorithm for ESPP which can avoid this problem. Our approach starts from a path that ignores all obstacles, and generates longer and longer paths, each avoiding more obstacles, until eventually the search finds an optimal valid path.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v15i1.21787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Euclidean Shortest Path Problem (ESPP) asks us to find a minimum length path between two points on a 2D plane while avoiding a set of polygonal obstacles. Existing approaches for ESPP, based on Dijkstra or A* search, are primal methods that gradually build up longer and longer valid paths until they reach the target. In this paper we define an alternative algorithm for ESPP which can avoid this problem. Our approach starts from a path that ignores all obstacles, and generates longer and longer paths, each avoiding more obstacles, until eventually the search finds an optimal valid path.
对偶欧几里得最短路径搜索(扩展摘要)
欧几里得最短路径问题(ESPP)要求我们在二维平面上找到两点之间的最小长度路径,同时避开一组多边形障碍物。现有的ESPP方法,基于Dijkstra或A*搜索,是逐渐建立越来越长的有效路径直到到达目标的原始方法。在本文中,我们定义了一种替代的ESPP算法来避免这个问题。我们的方法从一条忽略所有障碍的路径开始,生成越来越长的路径,每条路径都避免了更多的障碍,直到最终搜索找到一个最优的有效路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信