{"title":"New feature selection method for multi-class data: Iteratively weighted AUC (IWA)","authors":"P. Honzík, P. Kucera, O. Hyncica, Daniel Haupt","doi":"10.1109/IDAACS.2011.6072769","DOIUrl":null,"url":null,"abstract":"This paper deals with the new filter feature selection method Iteratively Weighted Area under Receiver Operating Characteristic (IWA). It is aimed for the multi-class problems with quantitative inputs. The experiments prove its superior quality in comparison to the equivalent methods.","PeriodicalId":106306,"journal":{"name":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2011.6072769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper deals with the new filter feature selection method Iteratively Weighted Area under Receiver Operating Characteristic (IWA). It is aimed for the multi-class problems with quantitative inputs. The experiments prove its superior quality in comparison to the equivalent methods.