{"title":"A 16-context Optically Reconfigurable Gate Array","authors":"M. Nakajima, Minoru Watanabe","doi":"10.1109/ASAP.2009.41","DOIUrl":null,"url":null,"abstract":"Demand for fast dynamic reconfiguration has increased since dynamic reconfiguration can accelerate the performance of processors. Dynamic reconfiguration has two important prerequisites: fast reconfiguration and numerous reconfiguration contexts. Unfortunately, fast reconfigurations and numerous contexts share a tradeoff relation on current VLSIs. Therefore, optically reconfigurable gate arrays were developed to resolve this dilemma. Optically reconfigurable gate arrays can realize a large virtual gate count that is much larger than those of current VLSI chips by exploiting the large storage capacity of a holographic memory. Furthermore, optically reconfigurable gate arrays can realize rapid reconfiguration using large bandwidth optical connections between a holographic memory and a programmable gate array VLSI. This paper presents the fastest 317–657 ns reconfiguration demonstration of a 16-context optically reconfigurable gate array architecture.","PeriodicalId":202421,"journal":{"name":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2009.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Demand for fast dynamic reconfiguration has increased since dynamic reconfiguration can accelerate the performance of processors. Dynamic reconfiguration has two important prerequisites: fast reconfiguration and numerous reconfiguration contexts. Unfortunately, fast reconfigurations and numerous contexts share a tradeoff relation on current VLSIs. Therefore, optically reconfigurable gate arrays were developed to resolve this dilemma. Optically reconfigurable gate arrays can realize a large virtual gate count that is much larger than those of current VLSI chips by exploiting the large storage capacity of a holographic memory. Furthermore, optically reconfigurable gate arrays can realize rapid reconfiguration using large bandwidth optical connections between a holographic memory and a programmable gate array VLSI. This paper presents the fastest 317–657 ns reconfiguration demonstration of a 16-context optically reconfigurable gate array architecture.