Urban sensing based on human mobility

Shenggong Ji, Yu Zheng, Tianrui Li
{"title":"Urban sensing based on human mobility","authors":"Shenggong Ji, Yu Zheng, Tianrui Li","doi":"10.1145/2971648.2971735","DOIUrl":null,"url":null,"abstract":"Urban sensing is a foundation of urban computing, collecting data in cities through ubiquitous computing techniques, e.g. using humans as sensors. In this paper, we propose a crowd-based urban sensing framework that maximizes the coverage of collected data in a spatio-temporal space, based on human mobility of participants recruited by a given budget. This framework provides participants with unobstructed tasks that do not break their original commuting plans, while ensuring a sensing program balanced coverage of data that better supports upper-level applications. The framework consists of three components: 1) an objective function to measure data coverage based on the entropy of data with different spatio-temporal granularities; 2) a graph-based task design algorithm to compute a near-optimal task for each participant, using a dynamic programming strategy; 3) a participant recruitment mechanism to find a portion of participants from candidates for a given budget. We evaluate our framework based on a field study and simulations, finding its advantages beyond baselines.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Urban sensing is a foundation of urban computing, collecting data in cities through ubiquitous computing techniques, e.g. using humans as sensors. In this paper, we propose a crowd-based urban sensing framework that maximizes the coverage of collected data in a spatio-temporal space, based on human mobility of participants recruited by a given budget. This framework provides participants with unobstructed tasks that do not break their original commuting plans, while ensuring a sensing program balanced coverage of data that better supports upper-level applications. The framework consists of three components: 1) an objective function to measure data coverage based on the entropy of data with different spatio-temporal granularities; 2) a graph-based task design algorithm to compute a near-optimal task for each participant, using a dynamic programming strategy; 3) a participant recruitment mechanism to find a portion of participants from candidates for a given budget. We evaluate our framework based on a field study and simulations, finding its advantages beyond baselines.
基于人类移动性的城市感知
城市感知是城市计算的基础,通过无处不在的计算技术收集城市数据,例如使用人类作为传感器。在本文中,我们提出了一个基于人群的城市感知框架,该框架基于给定预算招募的参与者的人类流动性,在时空空间中最大限度地覆盖收集到的数据。该框架为参与者提供不受阻碍的任务,而不会破坏他们原来的通勤计划,同时确保感知程序平衡数据覆盖,更好地支持上层应用程序。该框架由三个部分组成:1)基于不同时空粒度数据的熵来度量数据覆盖率的目标函数;2)基于图的任务设计算法,使用动态规划策略为每个参与者计算接近最优的任务;3)参与者招募机制,从给定预算的候选人中找到一部分参与者。我们在实地研究和模拟的基础上评估了我们的框架,发现它的优势超出了基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信