Latent Trajectory Modeling: A Light and Efficient Way to Introduce Time in Recommender Systems

Élie Guàrdia-Sebaoun, Vincent Guigue, P. Gallinari
{"title":"Latent Trajectory Modeling: A Light and Efficient Way to Introduce Time in Recommender Systems","authors":"Élie Guàrdia-Sebaoun, Vincent Guigue, P. Gallinari","doi":"10.1145/2792838.2799676","DOIUrl":null,"url":null,"abstract":"For recommender systems, time is often an important source of information but it is also a complex dimension to apprehend. We propose here to learn item and user representations such that any timely ordered sequence of items selected by a user will be represented as a trajectory of the user in a representation space. This allows us to rank new items for this user. We then enrich the item and user representations in order to perform rating prediction using a classical matrix factorization scheme. We demonstrate the interest of our approach regarding both item ranking and rating prediction on a series of classical benchmarks.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2799676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

For recommender systems, time is often an important source of information but it is also a complex dimension to apprehend. We propose here to learn item and user representations such that any timely ordered sequence of items selected by a user will be represented as a trajectory of the user in a representation space. This allows us to rank new items for this user. We then enrich the item and user representations in order to perform rating prediction using a classical matrix factorization scheme. We demonstrate the interest of our approach regarding both item ranking and rating prediction on a series of classical benchmarks.
潜在轨迹建模:在推荐系统中引入时间的一种简单有效的方法
对于推荐系统来说,时间通常是一个重要的信息来源,但它也是一个难以理解的复杂维度。我们在这里建议学习物品和用户表示,这样用户选择的任何及时有序的物品序列将被表示为用户在表示空间中的轨迹。这允许我们对该用户的新项目进行排名。然后,我们丰富项目和用户表示,以便使用经典的矩阵分解方案进行评级预测。我们在一系列经典基准上展示了我们的方法对项目排名和评级预测的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信