Document-Oriented Geospatial Data Warehouse: An Experimental Evaluation of SOLAP Queries

Marcio Ferro, Rogerio C. P. Fragoso, R. Fidalgo
{"title":"Document-Oriented Geospatial Data Warehouse: An Experimental Evaluation of SOLAP Queries","authors":"Marcio Ferro, Rogerio C. P. Fragoso, R. Fidalgo","doi":"10.1109/CBI.2019.00013","DOIUrl":null,"url":null,"abstract":"Geospatial Data Warehouse (GDW) is a repository of historical and geospatial data used in the decision-making process. This kind of system manages large volumes of data and supports Spatial On-Line Analytical Processing (SOLAP) queries. The use of NoSQL databases in the construction of GDW is still an unexplored topic, even though NoSQL databases present good performance and high scalability with low-cost hardware. In this context, we seek to identify the level of redundancy of geospatial data in Document-Oriented GDW (DGDW) that reduces the storage cost and increases the performance of SOLAP queries. Using the MongoDB database, we exhaustively define and investigate nine DGDW schemas, which have different levels of geospatial data redundancy in their dimensions. We performed an experimental evaluation of these schemas in a cluster structure, to analyze the data volume and the runtime of seven queries which simulate SOLAP operations in geospatial fields with different levels of redundancy and selectivity. Our experimental results indicate that the normalization of low-selectivity geospatial fields and the denormalization of high-selectivity geospatial fields are good strategies to reduce the storage cost and improve the performance of SOLAP queries. The results of our experimental evaluation are an important contribution because they can be used as a guide for construction of DGDW.","PeriodicalId":193238,"journal":{"name":"2019 IEEE 21st Conference on Business Informatics (CBI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 21st Conference on Business Informatics (CBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBI.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Geospatial Data Warehouse (GDW) is a repository of historical and geospatial data used in the decision-making process. This kind of system manages large volumes of data and supports Spatial On-Line Analytical Processing (SOLAP) queries. The use of NoSQL databases in the construction of GDW is still an unexplored topic, even though NoSQL databases present good performance and high scalability with low-cost hardware. In this context, we seek to identify the level of redundancy of geospatial data in Document-Oriented GDW (DGDW) that reduces the storage cost and increases the performance of SOLAP queries. Using the MongoDB database, we exhaustively define and investigate nine DGDW schemas, which have different levels of geospatial data redundancy in their dimensions. We performed an experimental evaluation of these schemas in a cluster structure, to analyze the data volume and the runtime of seven queries which simulate SOLAP operations in geospatial fields with different levels of redundancy and selectivity. Our experimental results indicate that the normalization of low-selectivity geospatial fields and the denormalization of high-selectivity geospatial fields are good strategies to reduce the storage cost and improve the performance of SOLAP queries. The results of our experimental evaluation are an important contribution because they can be used as a guide for construction of DGDW.
面向文档的地理空间数据仓库:SOLAP查询的实验评估
地理空间数据仓库(GDW)是用于决策过程的历史和地理空间数据的存储库。这种系统管理大量的数据,并支持空间在线分析处理(SOLAP)查询。在GDW的构建中使用NoSQL数据库仍然是一个未探索的话题,尽管NoSQL数据库具有良好的性能和高可扩展性,并且硬件成本低。在这种情况下,我们试图确定面向文档的GDW (DGDW)中地理空间数据的冗余级别,该级别可以降低存储成本并提高SOLAP查询的性能。使用MongoDB数据库,我们详尽地定义和研究了九个DGDW模式,它们在其维度上具有不同级别的地理空间数据冗余。我们在集群结构中对这些模式进行了实验评估,以分析七个查询的数据量和运行时,这些查询模拟了具有不同冗余和选择性级别的地理空间字段中的SOLAP操作。实验结果表明,低选择性地理空间字段的规范化和高选择性地理空间字段的非规范化是降低存储成本和提高SOLAP查询性能的良好策略。我们的实验评价结果对DGDW的构建具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信