Embedded vision-based Monte-Carlo robot localisation without additional sensors

S. Olufs, M. Vincze
{"title":"Embedded vision-based Monte-Carlo robot localisation without additional sensors","authors":"S. Olufs, M. Vincze","doi":"10.1109/AFRCON.2013.6757613","DOIUrl":null,"url":null,"abstract":"This paper presents a fast approach for vision-based self-localisation in the RoboCup middle size league without additional e.g. dead reckoning sensors. An omni-directional vision system extracts a few features from image that are mapped to an sparse a-priori known map of the environment using Monte Carlo filters. The Monte Carlo filters are also used to model a virtual odometry (mass-inertia model) which is maintained through the filter itself. The precision of approach is directly compared to a traditional approach using the identical data. We show that the approach is stable and reactive while keeping the processing time low.","PeriodicalId":159306,"journal":{"name":"2013 Africon","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Africon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFRCON.2013.6757613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a fast approach for vision-based self-localisation in the RoboCup middle size league without additional e.g. dead reckoning sensors. An omni-directional vision system extracts a few features from image that are mapped to an sparse a-priori known map of the environment using Monte Carlo filters. The Monte Carlo filters are also used to model a virtual odometry (mass-inertia model) which is maintained through the filter itself. The precision of approach is directly compared to a traditional approach using the identical data. We show that the approach is stable and reactive while keeping the processing time low.
嵌入式基于视觉的蒙特卡罗机器人定位,无需额外的传感器
本文提出了一种快速的基于视觉的自定位方法,在RoboCup中型联赛中不需要额外的例如航位推算传感器。全向视觉系统利用蒙特卡罗滤波器从图像中提取一些特征,并将其映射到已知环境的稀疏先验地图上。蒙特卡罗滤波器还用于模拟虚拟里程计(质量-惯性模型),该模型通过滤波器本身维持。并与使用相同数据的传统方法进行了精度比较。我们证明了该方法在保持较低的处理时间的同时是稳定的和反应性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信