A fast interpolation method for list decoding of RS and algebraic-geometric codes

S. Sakata, Y. Numakami, M. Fujisawa
{"title":"A fast interpolation method for list decoding of RS and algebraic-geometric codes","authors":"S. Sakata, Y. Numakami, M. Fujisawa","doi":"10.1109/ISIT.2000.866777","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient algorithm to find a Grobner basis of the ideal set of polynomials I(V) based on the Berlekamp-Massey-Sakata (BMS) algorithm, which gives another efficient method of giving the solution at the first stage of the Sudan algorithm (1997). We also show that the interpolation problem can be generalized to find a Grobner basis of the ideal I(V;M) which consists of polynomials having zeros (/spl alpha//sub i/,/spl beta//sub i/)/spl isin/V with some multiplicity condition specified by a set M (/spl isin/Z/sub 0//sup 2/) of integer vectors. This Hermitian type of interpolation problem takes a role in the improved version of the Sudan algorithm. A modification of BMS the algorithm can be applied to solve this problem. On the other hand, for list decoding of one-point AG codes our method can be adapted to find a Grobner basis of a relevant ideal.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we present an efficient algorithm to find a Grobner basis of the ideal set of polynomials I(V) based on the Berlekamp-Massey-Sakata (BMS) algorithm, which gives another efficient method of giving the solution at the first stage of the Sudan algorithm (1997). We also show that the interpolation problem can be generalized to find a Grobner basis of the ideal I(V;M) which consists of polynomials having zeros (/spl alpha//sub i/,/spl beta//sub i/)/spl isin/V with some multiplicity condition specified by a set M (/spl isin/Z/sub 0//sup 2/) of integer vectors. This Hermitian type of interpolation problem takes a role in the improved version of the Sudan algorithm. A modification of BMS the algorithm can be applied to solve this problem. On the other hand, for list decoding of one-point AG codes our method can be adapted to find a Grobner basis of a relevant ideal.
RS和代数-几何码列表译码的快速插值方法
在本文中,我们提出了一种基于Berlekamp-Massey-Sakata (BMS)算法的求多项式理想集I(V)的Grobner基的有效算法,它给出了在苏丹算法(1997)的第一阶段给出解的另一种有效方法。我们还证明了插值问题可以推广到寻找由整数向量的集合M (/spl isin/Z/下标0//下标1 //下标1 /)/spl isin/V组成的多项式的理想I(V;M)的Grobner基,该多项式由整数向量的集合M (/spl isin/Z/下标0//下标2/)指定若干多重性条件。这种厄米插值问题在苏丹算法的改进版本中发挥了作用。一种改进的BMS算法可用于解决这一问题。另一方面,对于单点AG码的列表解码,我们的方法可以用来寻找相关理想的Grobner基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信