Linearly polarized field of a flat aperture

S. Skulkin, Nikolai A. Lysenko, G. K. Uskov, Nikolai I. Kashcheev, Ksenia V. Smuseva
{"title":"Linearly polarized field of a flat aperture","authors":"S. Skulkin, Nikolai A. Lysenko, G. K. Uskov, Nikolai I. Kashcheev, Ksenia V. Smuseva","doi":"10.18469/1810-3189.2023.26.1.18-27","DOIUrl":null,"url":null,"abstract":"The article analyzes a flat circular aperture and proposes to use a new analytical expression that describes the radiation pattern of an elementary radiator of an antenna aperture depending on time and integration angle. The formula presented in the paper can be applied to any flat section of the aperture without taking into account its shape. A new equation for the antiderivative function of the impulse response of a circular aperture is presented in the form of an elliptic integral of the second kind. It is shown that the theoretically calculated results are in good agreement with numerical simulations. In the analysis of the numerical model, the method of finite integration in the time domain (FIT) was used. Due to the requirement of a large computational resource, the numerical model was simplified.","PeriodicalId":129469,"journal":{"name":"Physics of Wave Processes and Radio Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Processes and Radio Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18469/1810-3189.2023.26.1.18-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article analyzes a flat circular aperture and proposes to use a new analytical expression that describes the radiation pattern of an elementary radiator of an antenna aperture depending on time and integration angle. The formula presented in the paper can be applied to any flat section of the aperture without taking into account its shape. A new equation for the antiderivative function of the impulse response of a circular aperture is presented in the form of an elliptic integral of the second kind. It is shown that the theoretically calculated results are in good agreement with numerical simulations. In the analysis of the numerical model, the method of finite integration in the time domain (FIT) was used. Due to the requirement of a large computational resource, the numerical model was simplified.
平孔径的线偏振场
本文对平面圆孔径进行了分析,提出了一种新的解析表达式,用来描述天线孔径基本辐射体随时间和积分角的辐射方向图。本文所提出的公式可以应用于任何平坦截面的孔径,而不考虑其形状。以第二类椭圆积分的形式给出了圆孔径脉冲响应的不定函数方程。理论计算结果与数值模拟结果吻合较好。在数值模型的分析中,采用了时域有限积分法(FIT)。由于需要大量的计算资源,对数值模型进行了简化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信