A Model Based Reinforcement Learning Approach Using On-Line Clustering

Nikolaos Tziortziotis, K. Blekas
{"title":"A Model Based Reinforcement Learning Approach Using On-Line Clustering","authors":"Nikolaos Tziortziotis, K. Blekas","doi":"10.1109/ICTAI.2012.101","DOIUrl":null,"url":null,"abstract":"A significant issue in representing reinforcement learning agents in Markov decision processes is how to design efficient feature spaces in order to estimate optimal policy. This particular study addresses this challenge by proposing a compact framework that employs an on-line clustering approach for constructing appropriate basis functions. Also, it performs a state-action trajectory analysis to gain valuable affinity information among clusters and estimate their transition dynamics. Value function approximation is used for policy evaluation in a least-squares temporal difference framework. The proposed method is evaluated in several simulated and real environments, where we took promising results.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A significant issue in representing reinforcement learning agents in Markov decision processes is how to design efficient feature spaces in order to estimate optimal policy. This particular study addresses this challenge by proposing a compact framework that employs an on-line clustering approach for constructing appropriate basis functions. Also, it performs a state-action trajectory analysis to gain valuable affinity information among clusters and estimate their transition dynamics. Value function approximation is used for policy evaluation in a least-squares temporal difference framework. The proposed method is evaluated in several simulated and real environments, where we took promising results.
一种基于模型的在线聚类强化学习方法
在马尔可夫决策过程中表示强化学习智能体的一个重要问题是如何设计有效的特征空间以估计最优策略。本研究通过提出一个紧凑的框架来解决这一挑战,该框架采用在线聚类方法来构建适当的基函数。此外,它执行状态-行为轨迹分析,以获得集群之间有价值的亲和力信息,并估计它们的过渡动态。在最小二乘时间差分框架中,将值函数近似用于策略评估。在多个模拟和真实环境中对所提出的方法进行了评估,取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信