Ferns for area of interest free scanpath classification

Wolfgang Fuhl, Nora Castner, Thomas C. Kübler, Rene Alexander Lotz, W. Rosenstiel, Enkelejda Kasneci
{"title":"Ferns for area of interest free scanpath classification","authors":"Wolfgang Fuhl, Nora Castner, Thomas C. Kübler, Rene Alexander Lotz, W. Rosenstiel, Enkelejda Kasneci","doi":"10.1145/3314111.3319826","DOIUrl":null,"url":null,"abstract":"Scanpath classification can offer insight into the visual strategies of groups such as experts and novices. We propose to use random ferns in combination with saccade angle successions to compare scanpaths. One advantage of our method is that it does not require areas of interest to be computed or annotated. The conditional distribution in random ferns additionally allows for learning angle successions, which do not have to be entirely present in a scanpath. We evaluated our approach on two publicly available datasets and improved the classification accuracy by ≈ 10 and ≈ 20 percent.","PeriodicalId":161901,"journal":{"name":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","volume":"125 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314111.3319826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Scanpath classification can offer insight into the visual strategies of groups such as experts and novices. We propose to use random ferns in combination with saccade angle successions to compare scanpaths. One advantage of our method is that it does not require areas of interest to be computed or annotated. The conditional distribution in random ferns additionally allows for learning angle successions, which do not have to be entirely present in a scanpath. We evaluated our approach on two publicly available datasets and improved the classification accuracy by ≈ 10 and ≈ 20 percent.
蕨类植物无兴趣区扫描路径分类
扫描路径分类可以洞察专家和新手等群体的视觉策略。我们建议使用随机蕨类植物结合眼跳角序列来比较扫描路径。我们的方法的一个优点是它不需要计算或注释感兴趣的区域。随机蕨类植物中的条件分布还允许学习角度序列,这不必完全存在于扫描路径中。我们在两个公开可用的数据集上评估了我们的方法,并将分类精度提高了≈10%和≈20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信