Disparity Estimation for Focused Light Field Camera Using Cost Aggregation in Micro-Images

Zhi-Ping Ding, Qian Liu, Qing Wang
{"title":"Disparity Estimation for Focused Light Field Camera Using Cost Aggregation in Micro-Images","authors":"Zhi-Ping Ding, Qian Liu, Qing Wang","doi":"10.1109/ICVRV.2017.00083","DOIUrl":null,"url":null,"abstract":"Unlike conventional light field camera that records spatial and angular information explicitly, the focused light field camera implicitly collects angular samplings in microimages behind the micro-lens array. Without directly decoded sub-apertures, it is difficult to estimate disparity for focused light field camera. On the other hand, disparity estimation is a critical step for sub-aperture rendering from raw image. It is hence a typical \"chicken-and-egg\" problem. In this paper we propose a two-stage method for disparity estimation from the raw image. Compared with previous approaches which treat all pixels in a micro-image as a same disparity label, a segmentation-tree based cost aggregation is introduced to provide a more robust disparity estimation for each pixel, which optimizes the disparity of low-texture areas and yields sharper occlusion boundaries. After sub-apertures are rendered from the raw image using initial estimation, the optimal one is globally regularized using the reference sub-aperture image. Experimental results on real scene datasets have demonstrated advantages of our method over previous work, especially in low-texture areas and occlusion boundaries.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unlike conventional light field camera that records spatial and angular information explicitly, the focused light field camera implicitly collects angular samplings in microimages behind the micro-lens array. Without directly decoded sub-apertures, it is difficult to estimate disparity for focused light field camera. On the other hand, disparity estimation is a critical step for sub-aperture rendering from raw image. It is hence a typical "chicken-and-egg" problem. In this paper we propose a two-stage method for disparity estimation from the raw image. Compared with previous approaches which treat all pixels in a micro-image as a same disparity label, a segmentation-tree based cost aggregation is introduced to provide a more robust disparity estimation for each pixel, which optimizes the disparity of low-texture areas and yields sharper occlusion boundaries. After sub-apertures are rendered from the raw image using initial estimation, the optimal one is globally regularized using the reference sub-aperture image. Experimental results on real scene datasets have demonstrated advantages of our method over previous work, especially in low-texture areas and occlusion boundaries.
基于代价聚合的聚焦光场相机微图像视差估计
与传统光场相机明确记录空间和角度信息不同,聚焦光场相机隐式地在微透镜阵列后面的微图像中收集角度采样。对于聚焦光场相机来说,如果没有直接解码的子孔径,很难估计视差。另一方面,视差估计是从原始图像绘制子孔径的关键步骤。因此这是一个典型的“先有鸡还是先有蛋”的问题。本文提出了一种两阶段的原始图像视差估计方法。与以往将微图像中的所有像素视为相同视差标签的方法相比,该方法引入了基于分割树的代价聚合,为每个像素提供了更鲁棒的视差估计,从而优化了低纹理区域的视差,产生了更清晰的遮挡边界。对原始图像进行初始估计后,利用参考子孔径图像进行全局正则化,得到最优子孔径图像。在真实场景数据集上的实验结果证明了我们的方法优于以往的工作,特别是在低纹理区域和遮挡边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信