Quartile and Outlier Detection on Heterogeneous Clusters Using Distributed Radix Sort

Kyle Spafford, J. Meredith, J. Vetter
{"title":"Quartile and Outlier Detection on Heterogeneous Clusters Using Distributed Radix Sort","authors":"Kyle Spafford, J. Meredith, J. Vetter","doi":"10.1109/CLUSTER.2011.53","DOIUrl":null,"url":null,"abstract":"In the past few years, performance improvements in CPUs and memory technologies have outpaced those of storage systems. When extrapolated to the exascale, this trend places strict limits on the amount of data that can be written to disk for full analysis, resulting in an increased reliance on characterizing in-memory data. Many of these characterizations are simple, but require sorted data. This paper explores an example of this type of characterization -- the identification of quartiles and statistical outliers -- and presents a performance analysis of a distributed heterogeneous radix sort as well as an assessment of current architectural bottlenecks.","PeriodicalId":200830,"journal":{"name":"2011 IEEE International Conference on Cluster Computing","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2011.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the past few years, performance improvements in CPUs and memory technologies have outpaced those of storage systems. When extrapolated to the exascale, this trend places strict limits on the amount of data that can be written to disk for full analysis, resulting in an increased reliance on characterizing in-memory data. Many of these characterizations are simple, but require sorted data. This paper explores an example of this type of characterization -- the identification of quartiles and statistical outliers -- and presents a performance analysis of a distributed heterogeneous radix sort as well as an assessment of current architectural bottlenecks.
基于分布基数排序的异构聚类的四分位数和离群值检测
在过去的几年中,cpu和内存技术的性能改进已经超过了存储系统。当外推到exascale时,这种趋势严格限制了可以写入磁盘以进行完整分析的数据量,从而增加了对内存中数据特征的依赖。许多这些特征描述都很简单,但需要排序的数据。本文探讨了这种类型的特征的一个例子——四分位数和统计异常值的识别——并提出了分布式异构基数排序的性能分析以及当前架构瓶颈的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信