Design of Guruswami-Sudan List Decoding for Elliptic Codes

Yunqi Wan, Li Chen, Fangguo Zhang
{"title":"Design of Guruswami-Sudan List Decoding for Elliptic Codes","authors":"Yunqi Wan, Li Chen, Fangguo Zhang","doi":"10.1109/ITW44776.2019.8989286","DOIUrl":null,"url":null,"abstract":"Advancing from Reed-Solomon (RS) codes, the length of algebraic-geometric (AG) codes can exceed the size of finite field, resulting in a greater error-correction capability. However, this is realized with a genus penalty. Usually, they are not maximum distance separable (MDS) codes. One-point elliptic codes are either MDS or almost MDS, yielding a good tradeoff between codeword length and distance property. This paper proposes the Guruswami-Sudan (GS) list decoding algorithm for elliptic codes. To define the interpolated polynomial $Q(x,\\ y,\\ z)$, an explicit construction for the zero basis of each affine point is introduced. Given an interpolation multiplicity m, the error-correction capability $\\tau_{m}$ and the maximum decoding output cardinality lm of the GS algorithm are characterized. An efficient interpolation algorithm is further presented for elliptic codes. Performance of elliptic codes is shown for the first time, demonstrating their advantage over RS codes.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Advancing from Reed-Solomon (RS) codes, the length of algebraic-geometric (AG) codes can exceed the size of finite field, resulting in a greater error-correction capability. However, this is realized with a genus penalty. Usually, they are not maximum distance separable (MDS) codes. One-point elliptic codes are either MDS or almost MDS, yielding a good tradeoff between codeword length and distance property. This paper proposes the Guruswami-Sudan (GS) list decoding algorithm for elliptic codes. To define the interpolated polynomial $Q(x,\ y,\ z)$, an explicit construction for the zero basis of each affine point is introduced. Given an interpolation multiplicity m, the error-correction capability $\tau_{m}$ and the maximum decoding output cardinality lm of the GS algorithm are characterized. An efficient interpolation algorithm is further presented for elliptic codes. Performance of elliptic codes is shown for the first time, demonstrating their advantage over RS codes.
椭圆码的Guruswami-Sudan表译码设计
在RS码的基础上,代数几何码的长度可以超过有限域的大小,具有更强的纠错能力。然而,这是通过属惩罚来实现的。通常,它们不是最大距离可分离码。一点椭圆码要么是MDS,要么几乎是MDS,在码字长度和距离属性之间取得了很好的平衡。提出了椭圆码的Guruswami-Sudan (GS)表译码算法。为了定义插值多项式$Q(x,\ y,\ z)$,引入了每个仿射点的零基的显式构造。给定插值数m,描述了GS算法的纠错能力$\tau_{m}$和最大解码输出基数lm。进一步提出了一种高效的椭圆码插值算法。本文首次展示了椭圆码的性能,证明了椭圆码相对于RS码的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信