Self-position Estimation of Autonomous Mobile Robot with Size-variable Image Template

K. Doki, Naohiro Isetani, A. Torii, A. Ueda
{"title":"Self-position Estimation of Autonomous Mobile Robot with Size-variable Image Template","authors":"K. Doki, Naohiro Isetani, A. Torii, A. Ueda","doi":"10.1109/ICARCV.2006.345251","DOIUrl":null,"url":null,"abstract":"We propose a new image template generation method for the self-position estimation of an autonomous mobile robot. In the proposed method, an image template is generated with genetic algorithm. Then, in the process of the self-position estimation, the size of the image template can be varied in order to change the time for the self-position estimation according to the situation around the robot. Therefore, a suitable image template is searched by GA search as the size of the image is varied. The position of the robot is estimated by matching the input image at the current situation with the stored image templates which indicate certain positions. As a criterion of the template matching, the normalized correlation coefficient is applied. This method is sensitive to the position shift of the image. Therefore, in order to realize the robust self-position estimation for the position shift, the amount of the position shift between the image template and the input image is compensated before the template matching. The usefulness of the proposed method is shown through some experimental results","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a new image template generation method for the self-position estimation of an autonomous mobile robot. In the proposed method, an image template is generated with genetic algorithm. Then, in the process of the self-position estimation, the size of the image template can be varied in order to change the time for the self-position estimation according to the situation around the robot. Therefore, a suitable image template is searched by GA search as the size of the image is varied. The position of the robot is estimated by matching the input image at the current situation with the stored image templates which indicate certain positions. As a criterion of the template matching, the normalized correlation coefficient is applied. This method is sensitive to the position shift of the image. Therefore, in order to realize the robust self-position estimation for the position shift, the amount of the position shift between the image template and the input image is compensated before the template matching. The usefulness of the proposed method is shown through some experimental results
基于变尺寸图像模板的自主移动机器人自位置估计
针对自主移动机器人的位置估计问题,提出了一种新的图像模板生成方法。该方法采用遗传算法生成图像模板。然后,在自位置估计过程中,可以根据机器人周围的情况,改变图像模板的大小,以改变自位置估计的时间。因此,随着图像大小的变化,采用遗传算法搜索合适的图像模板。通过将当前状态下的输入图像与存储的指示特定位置的图像模板进行匹配来估计机器人的位置。采用归一化相关系数作为模板匹配的判据。该方法对图像的位置偏移敏感。因此,为了实现对位置偏移的鲁棒自位置估计,在模板匹配之前对图像模板与输入图像之间的位置偏移量进行补偿。实验结果表明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信