T. Zirwes, F. Zhang, P. Habisreuther, J. Denev, H. Bockhorn, D. Trimis
{"title":"Implementation and Validation of a Computationally Efficient DNS Solver for Reacting Flows in OpenFOAM","authors":"T. Zirwes, F. Zhang, P. Habisreuther, J. Denev, H. Bockhorn, D. Trimis","doi":"10.23967/WCCM-ECCOMAS.2020.175","DOIUrl":null,"url":null,"abstract":". To meet future climate goals, the efficiency of combustion devices has to be increased. This requires a better understanding of the underlying physics. The simulation of turbulent flames is a challenge because of the multi-scale nature of combustion processes: relevant length scales span over five orders of magnitude and time scales over more than ten. Because of this, the direct numerical simulation (DNS) of turbulent flames is only possible on large supercomputers. A DNS solver for chemically reacting flows implemented in the open-source framework OpenFOAM is presented. The thermo-chemical library Cantera is used to compute detailed transport coefficients based on kinetic gas theory. The multi-scale nature of time scales, which are much lower for the combustion chemistry than for the flow, are bridged by an operator splitting approach, which employs the open-source solver Sundials to integrate chemical reaction rates. Because the direct simulation","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
. To meet future climate goals, the efficiency of combustion devices has to be increased. This requires a better understanding of the underlying physics. The simulation of turbulent flames is a challenge because of the multi-scale nature of combustion processes: relevant length scales span over five orders of magnitude and time scales over more than ten. Because of this, the direct numerical simulation (DNS) of turbulent flames is only possible on large supercomputers. A DNS solver for chemically reacting flows implemented in the open-source framework OpenFOAM is presented. The thermo-chemical library Cantera is used to compute detailed transport coefficients based on kinetic gas theory. The multi-scale nature of time scales, which are much lower for the combustion chemistry than for the flow, are bridged by an operator splitting approach, which employs the open-source solver Sundials to integrate chemical reaction rates. Because the direct simulation