A Weighted Loss Function to Predict Control Parameters for Supercontinuum Generation Via Neural Networks

Diego Stucchi, Andrea Corsini, G. Genty, G. Boracchi, A. Foi
{"title":"A Weighted Loss Function to Predict Control Parameters for Supercontinuum Generation Via Neural Networks","authors":"Diego Stucchi, Andrea Corsini, G. Genty, G. Boracchi, A. Foi","doi":"10.1109/mlsp52302.2021.9596142","DOIUrl":null,"url":null,"abstract":"Supercontinuum light is generated by a train of laser pulses propagating in an optical fiber. The parameters characterizing these pulses influence the spectrum of the light as it exits the fiber. While spectrum generation is a direct process governed by nonlinear equations that can be reproduced through numerical simulation, determining the parameters of the pulse generating a given spectrum is a difficult inverse problem. Solving this inverse problem has a relevant practical implication, as it allows generating beams with desired spectral properties. We solve this multidimensional parameter estimation problem by training a neural network and we introduce, as key technical contribution, a weighted loss function that improves the estimation accuracy. Most remarkably, this loss function is not specific to the considered supercontinuum scenario, but has the potential to improve solutions of similar inverse problems where the forward process can be reproduced via computationally demanding simulations. Our experiments demonstrate the effectiveness of the pursued approach and of our weighted loss function.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supercontinuum light is generated by a train of laser pulses propagating in an optical fiber. The parameters characterizing these pulses influence the spectrum of the light as it exits the fiber. While spectrum generation is a direct process governed by nonlinear equations that can be reproduced through numerical simulation, determining the parameters of the pulse generating a given spectrum is a difficult inverse problem. Solving this inverse problem has a relevant practical implication, as it allows generating beams with desired spectral properties. We solve this multidimensional parameter estimation problem by training a neural network and we introduce, as key technical contribution, a weighted loss function that improves the estimation accuracy. Most remarkably, this loss function is not specific to the considered supercontinuum scenario, but has the potential to improve solutions of similar inverse problems where the forward process can be reproduced via computationally demanding simulations. Our experiments demonstrate the effectiveness of the pursued approach and of our weighted loss function.
基于加权损失函数的神经网络超连续统生成控制参数预测
超连续光是由一列激光脉冲在光纤中传播而产生的。表征这些脉冲的参数影响光在离开光纤时的光谱。虽然频谱产生是一个由非线性方程控制的直接过程,可以通过数值模拟再现,但确定产生给定频谱的脉冲参数是一个困难的逆问题。解决这个反问题具有相关的实际意义,因为它允许产生具有所需光谱特性的光束。我们通过训练神经网络来解决这个多维参数估计问题,并引入加权损失函数作为关键技术贡献,提高了估计精度。最值得注意的是,该损失函数并不特定于所考虑的超连续介质场景,而是有可能改进类似逆问题的解决方案,其中正向过程可以通过计算要求高的模拟来重现。我们的实验证明了所追求的方法和我们的加权损失函数的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信