Correlation test for high dimensional data with application to signal detection in sensor networks

X. Mestre, P. Vallet, W. Hachem
{"title":"Correlation test for high dimensional data with application to signal detection in sensor networks","authors":"X. Mestre, P. Vallet, W. Hachem","doi":"10.5281/ZENODO.44037","DOIUrl":null,"url":null,"abstract":"The problem of correlation detection of multivariate Gaussian observations is considered. The problem is formulated as a binary hypothesis test, where the null hypothesis corresponds to a diagonal correlation matrix with possibly different diagonal entries, whereas the alternative would be associated to any other form of positive covariance. Using tools from random matrix theory, we study the asymptotic behavior of the Generalized Likelihood Ratio Test (GLRT) under both hypothesis, assuming that both the sample size and the observation dimension tend to infinity at the same rate. It is shown that the GLRT statistic always converges to a Gaussian distribution, although the asymptotic mean and variance will strongly depend the actual hypothesis. Numerical simulations demonstrate the superiority of the proposed asymptotic description in situations where the sample size is not much larger than the observation dimension.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The problem of correlation detection of multivariate Gaussian observations is considered. The problem is formulated as a binary hypothesis test, where the null hypothesis corresponds to a diagonal correlation matrix with possibly different diagonal entries, whereas the alternative would be associated to any other form of positive covariance. Using tools from random matrix theory, we study the asymptotic behavior of the Generalized Likelihood Ratio Test (GLRT) under both hypothesis, assuming that both the sample size and the observation dimension tend to infinity at the same rate. It is shown that the GLRT statistic always converges to a Gaussian distribution, although the asymptotic mean and variance will strongly depend the actual hypothesis. Numerical simulations demonstrate the superiority of the proposed asymptotic description in situations where the sample size is not much larger than the observation dimension.
高维数据的相关检验及其在传感器网络信号检测中的应用
研究了多变量高斯观测值的相关检测问题。该问题被表述为二元假设检验,其中零假设对应于可能具有不同对角线条目的对角相关矩阵,而替代假设将与任何其他形式的正协方差相关。利用随机矩阵理论的工具,我们研究了广义似然比检验(GLRT)在两种假设下的渐近行为,假设样本量和观测维数都以相同的速率趋于无穷大。结果表明,GLRT统计量总是收敛于高斯分布,尽管渐近均值和方差将强烈依赖于实际假设。数值模拟表明,在样本量不大于观测维数的情况下,所提出的渐近描述具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信